SEMat / data /coconut_dataset.py
XiaRho's picture
Init
8b4c6c7 verified
raw
history blame
13.4 kB
import os
import time
import json
import torch
import numpy as np
import cv2
from torch.utils.data import Dataset, DistributedSampler, Sampler
from torchvision import transforms
from detectron2.utils.logger import setup_logger
from typing import Optional
from operator import itemgetter
from collections import defaultdict
from data.dim_dataset import GenBBox
def random_interp():
return np.random.choice([cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4])
class SplitConcatImage(object):
def __init__(self, concat_num=4, wo_mask_to_mattes=False):
self.concat_num = concat_num
self.wo_mask_to_mattes = wo_mask_to_mattes
if self.wo_mask_to_mattes:
assert self.concat_num == 5
def __call__(self, concat_image):
if isinstance(concat_image, list):
concat_image, image_path = concat_image[0], concat_image[1]
else:
image_path = None
H, W, _ = concat_image.shape
concat_num = self.concat_num
if image_path is not None:
if '06-14' in image_path:
concat_num = 4
elif 'ori_mask' in image_path or 'SEMat' in image_path:
concat_num = 3
else:
concat_num = 5
assert W % concat_num == 0
W = W // concat_num
image = concat_image[:H, :W]
if self.concat_num != 3:
trimap = concat_image[:H, (concat_num - 2) * W: (concat_num - 1) * W]
if self.wo_mask_to_mattes:
alpha = concat_image[:H, 2 * W: 3 * W]
else:
alpha = concat_image[:H, (concat_num - 1) * W: concat_num * W]
else:
trimap = concat_image[:H, (concat_num - 1) * W: concat_num * W]
alpha = concat_image[:H, (concat_num - 2) * W: (concat_num - 1) * W]
return {'image': image, 'trimap': trimap, 'alpha': alpha}
class RandomHorizontalFlip(object):
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, sample):
if np.random.uniform(0, 1) < self.prob:
for key in sample.keys():
sample[key] = cv2.flip(sample[key], 1)
return sample
class EmptyAug(object):
def __call__(self, sample):
return sample
class RandomReszieCrop(object):
def __init__(self, output_size=1024, aug_scale_min=0.5, aug_scale_max=1.5):
self.desired_size = output_size
self.aug_scale_min = aug_scale_min
self.aug_scale_max = aug_scale_max
def __call__(self, sample):
H, W, _ = sample['image'].shape
if self.aug_scale_min == 1.0 and self.aug_scale_max == 1.0:
crop_H, crop_W = H, W
crop_y1, crop_y2 = 0, crop_H
crop_x1, crop_x2 = 0, crop_W
scale_W, scaled_H = W, H
elif self.aug_scale_min == -1.0 and self.aug_scale_max == -1.0:
scale = min(self.desired_size / H, self.desired_size / W)
scaled_H, scale_W = round(H * scale), round(W * scale)
crop_H, crop_W = scaled_H, scale_W
crop_y1, crop_y2 = 0, crop_H
crop_x1, crop_x2 = 0, crop_W
else:
# random size
random_scale = np.random.uniform(0, 1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min # random_val: 0.5 ~ 1.5
scaled_size = round(random_scale * self.desired_size)
scale = min(scaled_size / H, scaled_size / W)
scaled_H, scale_W = round(H * scale), round(W * scale)
# random crop
crop_H, crop_W = min(self.desired_size, scaled_H), min(self.desired_size, scale_W) # crop_size
margin_H, margin_W = max(scaled_H - crop_H, 0), max(scale_W - crop_W, 0)
offset_H, offset_W = np.random.randint(0, margin_H + 1), np.random.randint(0, margin_W + 1)
crop_y1, crop_y2 = offset_H, offset_H + crop_H
crop_x1, crop_x2 = offset_W, offset_W + crop_W
for key in sample.keys():
sample[key] = cv2.resize(sample[key], (scale_W, scaled_H), interpolation=random_interp())[crop_y1: crop_y2, crop_x1: crop_x2, :] # resize and crop
padding = np.zeros(shape=(self.desired_size, self.desired_size, 3), dtype=sample[key].dtype) # pad to desired_size
padding[: crop_H, : crop_W, :] = sample[key]
sample[key] = padding
return sample
class RandomJitter(object):
"""
Random change the hue of the image
"""
def __call__(self, sample):
image = sample['image']
# convert to HSV space, convert to float32 image to keep precision during space conversion.
image = cv2.cvtColor(image.astype(np.float32)/255.0, cv2.COLOR_BGR2HSV)
# Hue noise
hue_jitter = np.random.randint(-40, 40)
image[:, :, 0] = np.remainder(image[:, :, 0].astype(np.float32) + hue_jitter, 360)
# Saturation noise
sat_bar = image[:, :, 1].mean()
sat_jitter = np.random.rand()*(1.1 - sat_bar)/5 - (1.1 - sat_bar) / 10
sat = image[:, :, 1]
sat = np.abs(sat + sat_jitter)
sat[sat>1] = 2 - sat[sat>1]
image[:, :, 1] = sat
# Value noise
val_bar = image[:, :, 2].mean()
val_jitter = np.random.rand()*(1.1 - val_bar)/5-(1.1 - val_bar) / 10
val = image[:, :, 2]
val = np.abs(val + val_jitter)
val[val>1] = 2 - val[val>1]
image[:, :, 2] = val
# convert back to BGR space
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
sample['image'] = image * 255
return sample
class ToTensor(object):
def __call__(self, sample):
image, alpha, trimap = sample['image'][:, :, ::-1], sample['alpha'], sample['trimap']
# image
image = image.transpose((2, 0, 1)) / 255.
sample['image'] = torch.from_numpy(image).float()
# alpha
alpha = alpha.transpose((2, 0, 1))[0: 1] / 255.
alpha[alpha < 0 ] = 0
alpha[alpha > 1] = 1
sample['alpha'] = torch.from_numpy(alpha).float()
# trimap
trimap = trimap.transpose((2, 0, 1))[0: 1] / 1.
sample['trimap'] = torch.from_numpy(trimap).float()
sample['trimap'][sample['trimap'] < 85] = 0
sample['trimap'][sample['trimap'] >= 170] = 1
sample['trimap'][sample['trimap'] >= 85] = 0.5
return sample
class COCONutData(Dataset):
def __init__(
self,
json_path,
data_root_path,
output_size = 512,
aug_scale_min = 0.5,
aug_scale_max = 1.5,
with_bbox = False,
bbox_offset_factor = None,
phase = "train",
min_miou = 95,
miou_json = '',
remove_coco_transparent = False,
coconut_num_ratio = None,
return_multi_fg_info = False,
wo_accessory_fusion = False,
wo_mask_to_mattes = False,
return_image_name = False,
):
self.data_root_path = data_root_path
self.output_size = output_size
self.aug_scale_min = aug_scale_min
self.aug_scale_max = aug_scale_max
self.with_bbox = with_bbox
self.bbox_offset_factor = bbox_offset_factor
self.phase = phase
self.min_miou = min_miou
self.miou_json = miou_json
self.remove_coco_transparent = remove_coco_transparent
self.coconut_num_ratio = coconut_num_ratio
self.return_multi_fg_info = return_multi_fg_info
self.wo_accessory_fusion = wo_accessory_fusion # TODO
self.wo_mask_to_mattes = wo_mask_to_mattes
self.return_image_name = return_image_name
assert self.wo_accessory_fusion + self.wo_mask_to_mattes <= 1
assert self.phase == 'train'
self.data_path = []
with open(json_path, "r") as file:
coconut_matting_info = json.load(file)
if self.miou_json != '':
name_2_miou_dict = defaultdict(int)
with open(self.miou_json, "r") as file:
coconut_matting_miou = json.load(file)
for miou, name in coconut_matting_miou:
name_2_miou_dict[name] = miou
for i in coconut_matting_info:
if 'accessory' in i['save_path']:
self.data_path.append(i['save_path'])
elif name_2_miou_dict[i['save_path'].split('/')[-1]] >= self.min_miou:
if not (self.remove_coco_transparent and 'glass' in i['save_path']):
self.data_path.append(i['save_path'])
else:
for i in coconut_matting_info:
self.data_path.append(i['save_path'])
if 'accessory' in json_path:
concat_num = 5
elif 'ori_mask' in json_path:
concat_num = 3
else:
concat_num = 4
train_trans = [
SplitConcatImage(concat_num, wo_mask_to_mattes = self.wo_mask_to_mattes),
RandomHorizontalFlip(prob=0 if hasattr(self, 'return_image_name') and self.return_image_name else 0.5),
RandomReszieCrop(self.output_size, self.aug_scale_min, self.aug_scale_max),
EmptyAug() if hasattr(self, 'return_image_name') and self.return_image_name else RandomJitter(),
ToTensor(),
GenBBox(bbox_offset_factor=self.bbox_offset_factor)
]
self.transform = transforms.Compose(train_trans)
print('coconut num: ', len(self.data_path) * self.coconut_num_ratio if self.coconut_num_ratio is not None else len(self.data_path))
def __getitem__(self, idx):
if self.coconut_num_ratio is not None:
if self.coconut_num_ratio < 1.0 or idx >= len(self.data_path):
idx = np.random.randint(0, len(self.data_path))
concat_image = cv2.imread(os.path.join(self.data_root_path, self.data_path[idx]))
sample = self.transform([concat_image, self.data_path[idx]])
sample['dataset_name'] = 'COCONut'
if self.return_multi_fg_info:
sample['multi_fg'] = False
if hasattr(self, 'return_image_name') and self.return_image_name:
sample['image_name'] = self.data_path[idx]
return sample
def __len__(self):
if self.coconut_num_ratio is not None:
return int(len(self.data_path) * self.coconut_num_ratio)
else:
return len(self.data_path)
class DatasetFromSampler(Dataset):
"""Dataset to create indexes from `Sampler`.
Args:
sampler: PyTorch sampler
"""
def __init__(self, sampler: Sampler):
"""Initialisation for DatasetFromSampler."""
self.sampler = sampler
self.sampler_list = None
def __getitem__(self, index: int):
"""Gets element of the dataset.
Args:
index: index of the element in the dataset
Returns:
Single element by index
"""
if self.sampler_list is None:
self.sampler_list = list(self.sampler)
return self.sampler_list[index]
def __len__(self) -> int:
"""
Returns:
int: length of the dataset
"""
return len(self.sampler)
class DistributedSamplerWrapper(DistributedSampler):
"""
Wrapper over `Sampler` for distributed training.
Allows you to use any sampler in distributed mode.
It is especially useful in conjunction with
`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSamplerWrapper instance as a DataLoader
sampler, and load a subset of subsampled data of the original dataset
that is exclusive to it.
.. note::
Sampler is assumed to be of constant size.
"""
def __init__(
self,
sampler,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
):
"""
Args:
sampler: Sampler used for subsampling
num_replicas (int, optional): Number of processes participating in
distributed training
rank (int, optional): Rank of the current process
within ``num_replicas``
shuffle (bool, optional): If true (default),
sampler will shuffle the indices
"""
super(DistributedSamplerWrapper, self).__init__(
DatasetFromSampler(sampler),
num_replicas=num_replicas,
rank=rank,
shuffle=shuffle,
)
self.sampler = sampler
def __iter__(self):
"""@TODO: Docs. Contribution is welcome."""
self.dataset = DatasetFromSampler(self.sampler)
indexes_of_indexes = super().__iter__()
subsampler_indexes = self.dataset
return iter(itemgetter(*indexes_of_indexes)(subsampler_indexes))
if __name__ == '__main__':
dataset = COCONutData(
json_path = '/root/data/my_path/Matting/DiffMatte-main/24-06-14_coco-nut_matting.json',
data_root_path = '/root/data/my_path/Matting/DiffMatte-main',
output_size = 1024,
aug_scale_min = 0.5,
aug_scale_max = 1.5,
with_bbox = True,
bbox_offset_factor = 0.1,
phase = "train"
)
data = dataset[0]
for key, val in data.items():
print(key, val.shape, torch.min(val), torch.max(val))