SEMat / modeling /semantic_enhanced_matting /mask_decoder_matting.py
XiaRho's picture
Init
8b4c6c7 verified
raw
history blame
16.1 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Tuple
import numpy as np
import cv2
from detectron2.layers.batch_norm import NaiveSyncBatchNorm
from modeling.semantic_enhanced_matting.modeling import TwoWayTransformer, MaskDecoder
from modeling.decoder.detail_capture import Detail_Capture
from modeling.decoder.unet_detail_capture import DetailUNet
# from nnMorpho.binary_operators import erosion
# class GenTrimapTorch(object):
# def __init__(self, max_kernal=200):
# self.max_kernal = max_kernal
# self.erosion_kernels = [None] + [torch.from_numpy(cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))).float().cuda() for size in range(1, self.max_kernal)]
# def __call__(self, mask, kernel_size):
# fg_width = kernel_size
# bg_width = kernel_size
# fg_mask = mask
# bg_mask = 1 - mask
# fg_mask = erosion(fg_mask, self.erosion_kernels[fg_width], border='a')
# bg_mask = erosion(bg_mask, self.erosion_kernels[bg_width], border='a')
# trimap = torch.ones_like(mask) * 0.5
# trimap[fg_mask == 1] = 1.0
# trimap[bg_mask == 1] = 0.0
# return trimap
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
self.sigmoid_output = sigmoid_output
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x
class MaskDecoderMatting(MaskDecoder):
def __init__(
self,
model_type,
checkpoint_path,
detail_capture,
mask_token_only,
norm_type = 'LN',
norm_mask_logits = False,
with_trimap = False,
min_kernel_size = 20,
kernel_div = 10,
concat_gen_trimap = False,
):
super().__init__(
transformer_dim=256,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=256,
mlp_dim=2048,
num_heads=8,
),
num_multimask_outputs=3,
activation=nn.GELU,
iou_head_depth=3,
iou_head_hidden_dim=256,
)
assert model_type in ["vit_b","vit_l","vit_h"]
assert norm_type in {'BN', 'LN', 'SyncBN'}
if norm_type == 'BN':
self.norm = torch.nn.BatchNorm2d
elif norm_type == 'SyncBN':
self.norm = NaiveSyncBatchNorm
else:
self.norm = LayerNorm2d
# checkpoint_dict = {"vit_b":"pretrained_checkpoint/sam_vit_b_maskdecoder.pth",
# "vit_l":"pretrained_checkpoint/sam_vit_l_maskdecoder.pth",
# 'vit_h':"pretrained_checkpoint/sam_vit_h_maskdecoder.pth"}
# checkpoint_path = checkpoint_dict[model_type]
self.load_state_dict(torch.load(checkpoint_path))
print("Matting Decoder init from SAM MaskDecoder")
self.frozen_params_str = set()
for n, p in self.named_parameters():
p.requires_grad = False
self.frozen_params_str.add(n)
self.detail_capture = detail_capture
self.mask_token_only = mask_token_only
self.norm_mask_logits = norm_mask_logits
transformer_dim = 256
vit_dim_dict = {"vit_b":768,"vit_l":1024,"vit_h":1280}
vit_dim = vit_dim_dict[model_type]
self.hf_token = nn.Embedding(1, transformer_dim)
self.hf_mlp = MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
self.num_mask_tokens = self.num_mask_tokens + 1
self.concat_gen_trimap = concat_gen_trimap
self.compress_vit_feat = nn.Sequential(
nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2),
self.norm(transformer_dim),
nn.GELU(),
nn.ConvTranspose2d(transformer_dim, transformer_dim // 8, kernel_size=2, stride=2)
)
self.embedding_encoder = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
self.norm(transformer_dim // 4),
nn.GELU(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
)
self.embedding_maskfeature = nn.Sequential(
nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1),
self.norm(transformer_dim // 4),
nn.GELU(),
nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1)
)
if isinstance(self.detail_capture, Detail_Capture):
self.glue_layer_0 = nn.Conv2d(self.detail_capture.fus_channs[2], transformer_dim // 8, 3, 1, 1)
else:
assert isinstance(self.detail_capture, DetailUNet)
self.trainable_params_str = set()
for n, p in self.named_parameters():
if p.requires_grad:
self.trainable_params_str.add(n)
self.with_trimap = with_trimap
self.min_kernel_size = min_kernel_size
self.kernel_div = kernel_div
if self.with_trimap and not self.concat_gen_trimap:
# self.gen_trimap = GenTrimapTorch()
raise ValueError('Discard GenTrimapTorch')
# self.trainable_params_str = {'detail_capture', 'hf_token', 'hf_mlp', 'compress_vit_feat', 'embedding_encoder', 'embedding_maskfeature', 'glue_layer_0'}
# for n, p in self.named_parameters():
# if p.requires_grad:
# assert n.split('.')[0] in self.trainable_params_str
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
# hq_token_only: bool,
interm_embeddings: torch.Tensor,
hq_features: torch.Tensor,
images: torch.Tensor,
hr_images_ori_h_w = None,
return_alpha_logits = False,
pred_trimap=None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Arguments:
image_embeddings (torch.Tensor): the embeddings from the ViT image encoder
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
multimask_output (bool): Whether to return multiple masks or a single
mask.
Returns:
torch.Tensor: batched predicted hq masks
"""
vit_features = interm_embeddings[0].permute(0, 3, 1, 2) # early-layer ViT feature, after 1st global attention block in ViT [B, 64, 64, 768]
# upsample image_embeddings x4.0 with detail_capture & embedding_encoder & compress_vit_feat
# regard hq_features as condition
if isinstance(self.norm_mask_logits, float):
norm_hq_features = hq_features / self.norm_mask_logits
elif self.norm_mask_logits:
norm_hq_features = hq_features / torch.std(hq_features, dim=(1, 2, 3), keepdim=True)
else:
norm_hq_features = hq_features
if hr_images_ori_h_w is not None:
assert not isinstance(self.detail_capture, Detail_Capture) and hq_features.shape[-2] == hq_features.shape[-1] == 1024
lr_images_before_pad_h_w = (1024 / max(hr_images_ori_h_w) * hr_images_ori_h_w[0], 1024 / max(hr_images_ori_h_w) * hr_images_ori_h_w[1])
lr_images_before_pad_h_w = (int(lr_images_before_pad_h_w[0] + 0.5), int(lr_images_before_pad_h_w[1] + 0.5))
norm_hq_features = F.interpolate(
norm_hq_features[:, :, :lr_images_before_pad_h_w[0], :lr_images_before_pad_h_w[1]],
size = (images.shape[-2], images.shape[-1]),
mode = 'bilinear',
align_corners = False
)
if self.concat_gen_trimap:
pred_trimap = F.interpolate(pred_trimap, size=(images.shape[-2], images.shape[-1]), mode='bilinear', align_corners=False)
pred_trimap = torch.argmax(pred_trimap, dim=1, keepdim=True).float() / 2.0
norm_hq_features = torch.concat((norm_hq_features, pred_trimap), dim=1)
elif self.with_trimap:
mask = (norm_hq_features > 0).float()
for i_batch in range(image_embeddings.shape[0]):
mask_area = torch.sum(mask[i_batch])
kernel_size = max(self.min_kernel_size, int((mask_area ** 0.5) / self.kernel_div))
kernel_size = min(kernel_size, self.gen_trimap.max_kernal - 1)
mask[i_batch, 0] = self.gen_trimap(mask[i_batch, 0], kernel_size=kernel_size)
trimaps = mask
norm_hq_features = torch.concat((norm_hq_features, trimaps), dim=1)
conditional_images = torch.concatenate((images, norm_hq_features), dim=1) # [B, 4, 1024, 1024]
if isinstance(self.detail_capture, Detail_Capture):
detail_features = self.detail_capture.convstream(conditional_images) # [B, 4, 1024, 1024] --> D0: [B, 4, 1024, 1024], D1: [B, 48, 512, 512], D2: [B, 96, 256, 256], D3: [B, 192, 128, 128]
matting_features = self.detail_capture.fusion_blks[0](image_embeddings, detail_features['D3']) # [B, 256, 64, 64] & [B, 192, 128, 128] --> [B, 256, 128, 128]
matting_features = self.detail_capture.fusion_blks[1](matting_features, detail_features['D2']) # [B, 256, 128, 128] & [B, 96, 256, 256] --> [B, 128, 256, 256]
matting_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features) + self.glue_layer_0(matting_features) # [B, 32, 256, 256]
else:
matting_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features)
batch_len = len(image_embeddings)
masks = []
iou_preds = []
for i_batch in range(batch_len):
mask, iou_pred = self.predict_masks(
image_embeddings=image_embeddings[i_batch].unsqueeze(0),
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings[i_batch],
dense_prompt_embeddings=dense_prompt_embeddings[i_batch],
matting_feature = matting_features[i_batch].unsqueeze(0)
)
masks.append(mask)
iou_preds.append(iou_pred)
masks = torch.cat(masks, 0) # [B, 5, 256, 256]
iou_preds = torch.cat(iou_preds, 0) # [4, 4]
if self.mask_token_only:
masks_matting = masks[:,slice(self.num_mask_tokens-1, self.num_mask_tokens), :, :] # [B, 1, 256, 256]
else:
masks_matting = masks # [B, 5, 256, 256]
if hr_images_ori_h_w is not None:
vit_features = F.interpolate(
vit_features[:, :, :math.ceil(lr_images_before_pad_h_w[0] / 16), :math.ceil(lr_images_before_pad_h_w[1] / 16)],
size = (images.shape[-2] // 16, images.shape[-1] // 16),
mode = 'bilinear',
align_corners = False
)
masks_matting = F.interpolate(
masks_matting[:, :, :math.ceil(lr_images_before_pad_h_w[0] / 4), :math.ceil(lr_images_before_pad_h_w[1] / 4)],
size = (images.shape[-2] // 4, images.shape[-1] // 4),
mode = 'bilinear',
align_corners = False
)
if isinstance(self.detail_capture, Detail_Capture):
matting_features = self.detail_capture.fusion_blks[2](masks_matting, detail_features['D1'])
matting_features = self.detail_capture.fusion_blks[3](matting_features, detail_features['D0'])
alpha = torch.sigmoid(self.detail_capture.matting_head(matting_features))
else:
if return_alpha_logits:
output = self.detail_capture(conditional_images, vit_features, masks_matting, return_alpha_logits = True)
alpha = torch.sigmoid(output[0]), output[1]
else:
alpha = torch.sigmoid(self.detail_capture(conditional_images, vit_features, masks_matting, return_alpha_logits = False))
if hr_images_ori_h_w is not None:
alpha = alpha[:, :, :hr_images_ori_h_w[0], :hr_images_ori_h_w[1]]
return alpha
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
matting_feature: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0) # [6, 256]
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) # [1, 6, 256]
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # [1, 8, 256]
# Expand per-image data in batch direction to be per-mask
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) # [1, 256, 64, 64]
src = src + dense_prompt_embeddings # [1, 256, 64, 64] + [1, 256, 64, 64]
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) # [1, 256, 64, 64]
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens) # [1, 8, 256], [1, 4096, 256]
iou_token_out = hs[:, 0, :] # [1, 256]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] # [1, 5, 256]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w) # [1, 256, 64, 64]
upscaled_embedding_sam = self.output_upscaling(src) # [1, 32, 256, 256]
upscaled_embedding_ours = self.embedding_maskfeature(upscaled_embedding_sam) + matting_feature # [1, 32, 256, 256]
hyper_in_list: List[torch.Tensor] = []
for i in range(self.num_mask_tokens):
if i < 4:
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
else:
hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1) # 5 * [1, 32] --> [1, 5, 32]
b, c, h, w = upscaled_embedding_sam.shape
masks_sam = (hyper_in[:,:4] @ upscaled_embedding_sam.view(b, c, h * w)).view(b, -1, h, w) # [1, 4, 32] @ [1, 32, 65536] --> [1, 4, 256, 256]
masks_ours = (hyper_in[:,4:] @ upscaled_embedding_ours.view(b, c, h * w)).view(b, -1, h, w) # [1, 1, 32] @ [1, 32, 65536] --> [1, 1, 256, 256]
masks = torch.cat([masks_sam,masks_ours], dim=1) # [1, 5, 256, 256]
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred