# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from functools import partial from typing import List, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from sam2.modeling.backbones.utils import ( PatchEmbed, window_partition, window_unpartition, ) from sam2.modeling.sam2_utils import DropPath, MLP def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor: if pool is None: return x # (B, H, W, C) -> (B, C, H, W) x = x.permute(0, 3, 1, 2) x = pool(x) # (B, C, H', W') -> (B, H', W', C) x = x.permute(0, 2, 3, 1) if norm: x = norm(x) return x class MultiScaleAttention(nn.Module): def __init__( self, dim: int, dim_out: int, num_heads: int, q_pool: nn.Module = None, ): super().__init__() self.dim = dim self.dim_out = dim_out self.num_heads = num_heads head_dim = dim_out // num_heads self.scale = head_dim**-0.5 self.q_pool = q_pool self.qkv = nn.Linear(dim, dim_out * 3) self.proj = nn.Linear(dim_out, dim_out) def forward(self, x: torch.Tensor) -> torch.Tensor: B, H, W, _ = x.shape # qkv with shape (B, H * W, 3, nHead, C) qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) # q, k, v with shape (B, H * W, nheads, C) q, k, v = torch.unbind(qkv, 2) # Q pooling (for downsample at stage changes) if self.q_pool: q = do_pool(q.reshape(B, H, W, -1), self.q_pool) H, W = q.shape[1:3] # downsampled shape q = q.reshape(B, H * W, self.num_heads, -1) # Torch's SDPA expects [B, nheads, H*W, C] so we transpose x = F.scaled_dot_product_attention( q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), ) # Transpose back x = x.transpose(1, 2) x = x.reshape(B, H, W, -1) x = self.proj(x) return x class MultiScaleBlock(nn.Module): def __init__( self, dim: int, dim_out: int, num_heads: int, mlp_ratio: float = 4.0, drop_path: float = 0.0, norm_layer: Union[nn.Module, str] = "LayerNorm", q_stride: Tuple[int, int] = None, act_layer: nn.Module = nn.GELU, window_size: int = 0, ): super().__init__() if isinstance(norm_layer, str): norm_layer = partial(getattr(nn, norm_layer), eps=1e-6) self.dim = dim self.dim_out = dim_out self.norm1 = norm_layer(dim) self.window_size = window_size self.pool, self.q_stride = None, q_stride if self.q_stride: self.pool = nn.MaxPool2d( kernel_size=q_stride, stride=q_stride, ceil_mode=False ) self.attn = MultiScaleAttention( dim, dim_out, num_heads=num_heads, q_pool=self.pool, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim_out) self.mlp = MLP( dim_out, int(dim_out * mlp_ratio), dim_out, num_layers=2, activation=act_layer, ) if dim != dim_out: self.proj = nn.Linear(dim, dim_out) def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x # B, H, W, C x = self.norm1(x) # Skip connection if self.dim != self.dim_out: shortcut = do_pool(self.proj(x), self.pool) # Window partition window_size = self.window_size if window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, window_size) # Window Attention + Q Pooling (if stage change) x = self.attn(x) if self.q_stride: # Shapes have changed due to Q pooling window_size = self.window_size // self.q_stride[0] H, W = shortcut.shape[1:3] pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size pad_hw = (H + pad_h, W + pad_w) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, window_size, pad_hw, (H, W)) x = shortcut + self.drop_path(x) # MLP x = x + self.drop_path(self.mlp(self.norm2(x))) return x class Hiera(nn.Module): """ Reference: https://arxiv.org/abs/2306.00989 """ def __init__( self, embed_dim: int = 96, # initial embed dim num_heads: int = 1, # initial number of heads drop_path_rate: float = 0.0, # stochastic depth q_pool: int = 3, # number of q_pool stages q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage dim_mul: float = 2.0, # dim_mul factor at stage shift head_mul: float = 2.0, # head_mul factor at stage shift window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14), # window size per stage, when not using global att. window_spec: Tuple[int, ...] = ( 8, 4, 14, 7, ), # global attn in these blocks global_att_blocks: Tuple[int, ...] = ( 12, 16, 20, ), return_interm_layers=True, # return feats from every stage ): super().__init__() assert len(stages) == len(window_spec) self.window_spec = window_spec depth = sum(stages) self.q_stride = q_stride self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] assert 0 <= q_pool <= len(self.stage_ends[:-1]) self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] self.return_interm_layers = return_interm_layers self.patch_embed = PatchEmbed( embed_dim=embed_dim, ) # Which blocks have global att? self.global_att_blocks = global_att_blocks # Windowed positional embedding (https://arxiv.org/abs/2311.05613) self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size self.pos_embed = nn.Parameter( torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size) ) self.pos_embed_window = nn.Parameter( torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]) ) dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule cur_stage = 1 self.blocks = nn.ModuleList() for i in range(depth): dim_out = embed_dim # lags by a block, so first block of # next stage uses an initial window size # of previous stage and final window size of current stage window_size = self.window_spec[cur_stage - 1] if self.global_att_blocks is not None: window_size = 0 if i in self.global_att_blocks else window_size if i - 1 in self.stage_ends: dim_out = int(embed_dim * dim_mul) num_heads = int(num_heads * head_mul) cur_stage += 1 block = MultiScaleBlock( dim=embed_dim, dim_out=dim_out, num_heads=num_heads, drop_path=dpr[i], q_stride=self.q_stride if i in self.q_pool_blocks else None, window_size=window_size, ) embed_dim = dim_out self.blocks.append(block) self.channel_list = ( [self.blocks[i].dim_out for i in self.stage_ends[::-1]] if return_interm_layers else [self.blocks[-1].dim_out] ) def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: h, w = hw window_embed = self.pos_embed_window pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") pos_embed = pos_embed + window_embed.tile( [x // y for x, y in zip(pos_embed.shape, window_embed.shape)] ) pos_embed = pos_embed.permute(0, 2, 3, 1) return pos_embed def forward(self, x: torch.Tensor) -> List[torch.Tensor]: x = self.patch_embed(x) # x: (B, H, W, C) # Add pos embed x = x + self._get_pos_embed(x.shape[1:3]) outputs = [] for i, blk in enumerate(self.blocks): x = blk(x) if (i == self.stage_ends[-1]) or ( i in self.stage_ends and self.return_interm_layers ): feats = x.permute(0, 3, 1, 2) outputs.append(feats) return outputs class HieraBBoxMask(Hiera): def __init__( self, **kwargs, ) -> None: super().__init__(**kwargs) self.bbox_mask_patch_embed = PatchEmbed( in_chans=4, embed_dim=self.patch_embed.proj.out_channels, ) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: # x = self.patch_embed(x) img, condition = x[0], x[1] if condition is not None: # concat mask and img as condition bbox_mask = torch.zeros_like(img)[:, 0:1] for i in range(condition.shape[0]): l, u, r, d = condition[i, 0, :] bbox_mask[i, :, int(u): int(d), int(l): int(r)] = 1.0 condition_input = torch.concat((img, bbox_mask), dim=1) x = self.patch_embed(img) + self.bbox_mask_patch_embed(condition_input) else: x = self.patch_embed(img) # x: (B, H, W, C) # Add pos embed x = x + self._get_pos_embed(x.shape[1:3]) outputs = [] for i, blk in enumerate(self.blocks): x = blk(x) if (i == self.stage_ends[-1]) or ( i in self.stage_ends and self.return_interm_layers ): feats = x.permute(0, 3, 1, 2) outputs.append(feats) return outputs