import math import torch import torch.nn as nn import torch.nn.functional as F from typing import List, Tuple import numpy as np import cv2 from detectron2.layers.batch_norm import NaiveSyncBatchNorm from modeling.semantic_enhanced_matting.modeling import TwoWayTransformer, MaskDecoder from modeling.decoder.detail_capture import Detail_Capture from modeling.decoder.unet_detail_capture import DetailUNet # from nnMorpho.binary_operators import erosion # class GenTrimapTorch(object): # def __init__(self, max_kernal=200): # self.max_kernal = max_kernal # self.erosion_kernels = [None] + [torch.from_numpy(cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))).float().cuda() for size in range(1, self.max_kernal)] # def __call__(self, mask, kernel_size): # fg_width = kernel_size # bg_width = kernel_size # fg_mask = mask # bg_mask = 1 - mask # fg_mask = erosion(fg_mask, self.erosion_kernels[fg_width], border='a') # bg_mask = erosion(bg_mask, self.erosion_kernels[bg_width], border='a') # trimap = torch.ones_like(mask) * 0.5 # trimap[fg_mask == 1] = 1.0 # trimap[bg_mask == 1] = 0.0 # return trimap class LayerNorm2d(nn.Module): def __init__(self, num_channels: int, eps: float = 1e-6) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class MLP(nn.Module): def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, ) -> None: super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) self.sigmoid_output = sigmoid_output def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) if self.sigmoid_output: x = F.sigmoid(x) return x class MaskDecoderMatting(MaskDecoder): def __init__( self, model_type, checkpoint_path, detail_capture, mask_token_only, norm_type = 'LN', norm_mask_logits = False, with_trimap = False, min_kernel_size = 20, kernel_div = 10, concat_gen_trimap = False, ): super().__init__( transformer_dim=256, transformer=TwoWayTransformer( depth=2, embedding_dim=256, mlp_dim=2048, num_heads=8, ), num_multimask_outputs=3, activation=nn.GELU, iou_head_depth=3, iou_head_hidden_dim=256, ) assert model_type in ["vit_b","vit_l","vit_h"] assert norm_type in {'BN', 'LN', 'SyncBN'} if norm_type == 'BN': self.norm = torch.nn.BatchNorm2d elif norm_type == 'SyncBN': self.norm = NaiveSyncBatchNorm else: self.norm = LayerNorm2d # checkpoint_dict = {"vit_b":"pretrained_checkpoint/sam_vit_b_maskdecoder.pth", # "vit_l":"pretrained_checkpoint/sam_vit_l_maskdecoder.pth", # 'vit_h':"pretrained_checkpoint/sam_vit_h_maskdecoder.pth"} # checkpoint_path = checkpoint_dict[model_type] self.load_state_dict(torch.load(checkpoint_path)) print("Matting Decoder init from SAM MaskDecoder") self.frozen_params_str = set() for n, p in self.named_parameters(): p.requires_grad = False self.frozen_params_str.add(n) self.detail_capture = detail_capture self.mask_token_only = mask_token_only self.norm_mask_logits = norm_mask_logits transformer_dim = 256 vit_dim_dict = {"vit_b":768,"vit_l":1024,"vit_h":1280} vit_dim = vit_dim_dict[model_type] self.hf_token = nn.Embedding(1, transformer_dim) self.hf_mlp = MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) self.num_mask_tokens = self.num_mask_tokens + 1 self.concat_gen_trimap = concat_gen_trimap self.compress_vit_feat = nn.Sequential( nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2), self.norm(transformer_dim), nn.GELU(), nn.ConvTranspose2d(transformer_dim, transformer_dim // 8, kernel_size=2, stride=2) ) self.embedding_encoder = nn.Sequential( nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), self.norm(transformer_dim // 4), nn.GELU(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), ) self.embedding_maskfeature = nn.Sequential( nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1), self.norm(transformer_dim // 4), nn.GELU(), nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1) ) if isinstance(self.detail_capture, Detail_Capture): self.glue_layer_0 = nn.Conv2d(self.detail_capture.fus_channs[2], transformer_dim // 8, 3, 1, 1) else: assert isinstance(self.detail_capture, DetailUNet) self.trainable_params_str = set() for n, p in self.named_parameters(): if p.requires_grad: self.trainable_params_str.add(n) self.with_trimap = with_trimap self.min_kernel_size = min_kernel_size self.kernel_div = kernel_div if self.with_trimap and not self.concat_gen_trimap: # self.gen_trimap = GenTrimapTorch() raise ValueError('Discard GenTrimapTorch') # self.trainable_params_str = {'detail_capture', 'hf_token', 'hf_mlp', 'compress_vit_feat', 'embedding_encoder', 'embedding_maskfeature', 'glue_layer_0'} # for n, p in self.named_parameters(): # if p.requires_grad: # assert n.split('.')[0] in self.trainable_params_str def forward( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, # hq_token_only: bool, interm_embeddings: torch.Tensor, hq_features: torch.Tensor, images: torch.Tensor, hr_images_ori_h_w = None, return_alpha_logits = False, pred_trimap=None ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Arguments: image_embeddings (torch.Tensor): the embeddings from the ViT image encoder image_pe (torch.Tensor): positional encoding with the shape of image_embeddings sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs multimask_output (bool): Whether to return multiple masks or a single mask. Returns: torch.Tensor: batched predicted hq masks """ vit_features = interm_embeddings[0].permute(0, 3, 1, 2) # early-layer ViT feature, after 1st global attention block in ViT [B, 64, 64, 768] # upsample image_embeddings x4.0 with detail_capture & embedding_encoder & compress_vit_feat # regard hq_features as condition if isinstance(self.norm_mask_logits, float): norm_hq_features = hq_features / self.norm_mask_logits elif self.norm_mask_logits: norm_hq_features = hq_features / torch.std(hq_features, dim=(1, 2, 3), keepdim=True) else: norm_hq_features = hq_features if hr_images_ori_h_w is not None: assert not isinstance(self.detail_capture, Detail_Capture) and hq_features.shape[-2] == hq_features.shape[-1] == 1024 lr_images_before_pad_h_w = (1024 / max(hr_images_ori_h_w) * hr_images_ori_h_w[0], 1024 / max(hr_images_ori_h_w) * hr_images_ori_h_w[1]) lr_images_before_pad_h_w = (int(lr_images_before_pad_h_w[0] + 0.5), int(lr_images_before_pad_h_w[1] + 0.5)) norm_hq_features = F.interpolate( norm_hq_features[:, :, :lr_images_before_pad_h_w[0], :lr_images_before_pad_h_w[1]], size = (images.shape[-2], images.shape[-1]), mode = 'bilinear', align_corners = False ) if self.concat_gen_trimap: pred_trimap = F.interpolate(pred_trimap, size=(images.shape[-2], images.shape[-1]), mode='bilinear', align_corners=False) pred_trimap = torch.argmax(pred_trimap, dim=1, keepdim=True).float() / 2.0 norm_hq_features = torch.concat((norm_hq_features, pred_trimap), dim=1) elif self.with_trimap: mask = (norm_hq_features > 0).float() for i_batch in range(image_embeddings.shape[0]): mask_area = torch.sum(mask[i_batch]) kernel_size = max(self.min_kernel_size, int((mask_area ** 0.5) / self.kernel_div)) kernel_size = min(kernel_size, self.gen_trimap.max_kernal - 1) mask[i_batch, 0] = self.gen_trimap(mask[i_batch, 0], kernel_size=kernel_size) trimaps = mask norm_hq_features = torch.concat((norm_hq_features, trimaps), dim=1) conditional_images = torch.concatenate((images, norm_hq_features), dim=1) # [B, 4, 1024, 1024] if isinstance(self.detail_capture, Detail_Capture): detail_features = self.detail_capture.convstream(conditional_images) # [B, 4, 1024, 1024] --> D0: [B, 4, 1024, 1024], D1: [B, 48, 512, 512], D2: [B, 96, 256, 256], D3: [B, 192, 128, 128] matting_features = self.detail_capture.fusion_blks[0](image_embeddings, detail_features['D3']) # [B, 256, 64, 64] & [B, 192, 128, 128] --> [B, 256, 128, 128] matting_features = self.detail_capture.fusion_blks[1](matting_features, detail_features['D2']) # [B, 256, 128, 128] & [B, 96, 256, 256] --> [B, 128, 256, 256] matting_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features) + self.glue_layer_0(matting_features) # [B, 32, 256, 256] else: matting_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features) batch_len = len(image_embeddings) masks = [] iou_preds = [] for i_batch in range(batch_len): mask, iou_pred = self.predict_masks( image_embeddings=image_embeddings[i_batch].unsqueeze(0), image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings[i_batch], dense_prompt_embeddings=dense_prompt_embeddings[i_batch], matting_feature = matting_features[i_batch].unsqueeze(0) ) masks.append(mask) iou_preds.append(iou_pred) masks = torch.cat(masks, 0) # [B, 5, 256, 256] iou_preds = torch.cat(iou_preds, 0) # [4, 4] if self.mask_token_only: masks_matting = masks[:,slice(self.num_mask_tokens-1, self.num_mask_tokens), :, :] # [B, 1, 256, 256] else: masks_matting = masks # [B, 5, 256, 256] if hr_images_ori_h_w is not None: vit_features = F.interpolate( vit_features[:, :, :math.ceil(lr_images_before_pad_h_w[0] / 16), :math.ceil(lr_images_before_pad_h_w[1] / 16)], size = (images.shape[-2] // 16, images.shape[-1] // 16), mode = 'bilinear', align_corners = False ) masks_matting = F.interpolate( masks_matting[:, :, :math.ceil(lr_images_before_pad_h_w[0] / 4), :math.ceil(lr_images_before_pad_h_w[1] / 4)], size = (images.shape[-2] // 4, images.shape[-1] // 4), mode = 'bilinear', align_corners = False ) if isinstance(self.detail_capture, Detail_Capture): matting_features = self.detail_capture.fusion_blks[2](masks_matting, detail_features['D1']) matting_features = self.detail_capture.fusion_blks[3](matting_features, detail_features['D0']) alpha = torch.sigmoid(self.detail_capture.matting_head(matting_features)) else: if return_alpha_logits: output = self.detail_capture(conditional_images, vit_features, masks_matting, return_alpha_logits = True) alpha = torch.sigmoid(output[0]), output[1] else: alpha = torch.sigmoid(self.detail_capture(conditional_images, vit_features, masks_matting, return_alpha_logits = False)) if hr_images_ori_h_w is not None: alpha = alpha[:, :, :hr_images_ori_h_w[0], :hr_images_ori_h_w[1]] return alpha def predict_masks( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, matting_feature: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """Predicts masks. See 'forward' for more details.""" output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0) # [6, 256] output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) # [1, 6, 256] tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # [1, 8, 256] # Expand per-image data in batch direction to be per-mask src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) # [1, 256, 64, 64] src = src + dense_prompt_embeddings # [1, 256, 64, 64] + [1, 256, 64, 64] pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) # [1, 256, 64, 64] b, c, h, w = src.shape # Run the transformer hs, src = self.transformer(src, pos_src, tokens) # [1, 8, 256], [1, 4096, 256] iou_token_out = hs[:, 0, :] # [1, 256] mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] # [1, 5, 256] # Upscale mask embeddings and predict masks using the mask tokens src = src.transpose(1, 2).view(b, c, h, w) # [1, 256, 64, 64] upscaled_embedding_sam = self.output_upscaling(src) # [1, 32, 256, 256] upscaled_embedding_ours = self.embedding_maskfeature(upscaled_embedding_sam) + matting_feature # [1, 32, 256, 256] hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): if i < 4: hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) else: hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :])) hyper_in = torch.stack(hyper_in_list, dim=1) # 5 * [1, 32] --> [1, 5, 32] b, c, h, w = upscaled_embedding_sam.shape masks_sam = (hyper_in[:,:4] @ upscaled_embedding_sam.view(b, c, h * w)).view(b, -1, h, w) # [1, 4, 32] @ [1, 32, 65536] --> [1, 4, 256, 256] masks_ours = (hyper_in[:,4:] @ upscaled_embedding_ours.view(b, c, h * w)).view(b, -1, h, w) # [1, 1, 32] @ [1, 32, 65536] --> [1, 1, 256, 256] masks = torch.cat([masks_sam,masks_ours], dim=1) # [1, 5, 256, 256] iou_pred = self.iou_prediction_head(iou_token_out) return masks, iou_pred