File size: 18,455 Bytes
85e0a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058142a
85e0a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# port of
# https://colab.research.google.com/drive/1PJgcJ4ly7x5GuZy344eJeYSODo8trbM4#scrollTo=39F2u-4hvwLU

from dataclasses import dataclass
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import matplotlib
import datetime
from scipy.interpolate import interp1d   

import gradio as gr
import plotly.express as px
import plotly.graph_objects as go


#@title ### Downloading the data
# !wget "https://static.renyi.hu/ai-shared/daniel/pq/PL_44527.19-21.csv"
# !wget "https://static.renyi.hu/ai-shared/daniel/pq/pq_terheles_2021_adatok.tsv"


PATH_PREFIX = "./"

matplotlib.rcParams['figure.figsize'] = [12, 8]

START = f"2021-01-01"
END = f"2022-01-01"


def read_datasets():
    #@title ### Preprocessing meteorologic data
    met_data = pd.read_csv(PATH_PREFIX + 'PL_44527.19-21.csv.gz', compression='gzip', sep=';', skipinitialspace=True, na_values='n/a', skiprows=[0, 1, 2, 3, 4])
    met_data['Time'] = met_data['Time'].astype(str)
    date_time = met_data['Time'] = pd.to_datetime(met_data['Time'], format='%Y%m%d%H%M')
    met_data = met_data.set_index('Time')


    #@title ### Preprocessing consumption data
    cons_data = pd.read_csv(PATH_PREFIX + 'pq_terheles_2021_adatok.tsv', sep='\t', skipinitialspace=True, na_values='n/a', decimal=',')
    cons_data['Time'] = pd.to_datetime(cons_data['Korrigált időpont'], format='%m/%d/%y %H:%M')
    cons_data = cons_data.set_index('Time')
    cons_data['Consumption'] = cons_data['Hatásos teljesítmény [kW]']

    # consumption data is at 14 29 44 59 minutes, we move it by 1 minute
    # to sync it with production data:
    cons_data.index = cons_data.index + pd.DateOffset(minutes=1)

    met_2021_data = met_data[(met_data.index >= START) & (met_data.index < END)]
    cons_2021_data = cons_data[(cons_data.index >= START) & (cons_data.index < END)]

    return met_2021_data, cons_2021_data


@dataclass
class Parameters:
    solar_cell_num: float = 114 # units
    solar_efficiency: float = 0.93 * 0.96 # [dimensionless]
    NOCT: float = 280 # [W]
    NOCT_irradiation: float = 800 # [W/m^2]

    bess_nominal_capacity: float = 330 # [Ah]
    bess_charge: float = 50 # [kW]
    bess_discharge: float = 60 # [kW]
    voltage: float = 600 # [V]
    maximal_depth_of_discharge: float = 0.75 # [dimensionless]
    energy_loss: float = 0.1 # [dimensionless]

    @property
    def bess_capacity(self):
        return self.bess_nominal_capacity * self.voltage / 1000


# mutates met_2021_data
def add_production_field(met_2021_data, parameters):
    sr = met_2021_data['sr']

    nop_total = sr * parameters.solar_cell_num * parameters.solar_efficiency * parameters.NOCT / parameters.NOCT_irradiation / 1e3
    nop_total = nop_total.clip(0)
    met_2021_data['Production'] = nop_total


def interpolate_and_join(met_2021_data, cons_2021_data):
    applicable = 24*60*365 - 15 + 5

    demand_f = interp1d(range(0, 365*24*60, 15), cons_2021_data['Consumption'])
    #demand_f = interp1d(range(0, 6*24*60, 15), cons_2021_data['Consumption'])
    demand_interp = demand_f(range(0, applicable, 5))

    production_f = interp1d(range(0, 365*24*60, 10), met_2021_data['Production'])
    #production_f = interp1d(range(0, 6*24*60, 10), met_2021_data['Production'])
    production_interp = production_f(range(0, applicable, 5))

    all_2021_datetimeindex = pd.date_range(start=START, end=END, freq='5min')[:len(production_interp)]

    all_2021_data = pd.DataFrame({'Consumption': demand_interp, 'Production': production_interp})
    all_2021_data = all_2021_data.set_index(all_2021_datetimeindex)
    return all_2021_data


def simulator_with_solar(all_data, parameters):
    demand_np = all_data['Consumption'].to_numpy()
    production_np = all_data['Production'].to_numpy()
    assert len(demand_np) == len(production_np)
    step_in_minutes = all_data.index.freq.n
    print("Simulating for", len(demand_np), "time steps. Each step is", step_in_minutes, "minutes.")
    soc_series = [] # soc = state_of_charge.
    # by convention, we only call end user demand, demand,
    # and we only call end user consumption, consumption.
    # in our simple model, demand is always satisfied, hence demand=consumption.
    # BESS demand is called charge.
    consumption_from_solar_series = [] # demand satisfied by solar production
    consumption_from_network_series = [] # demand satisfied by network
    consumption_from_bess_series = [] # demand satisfied by BESS
    # the previous three must sum to demand_series.
    charge_of_bess_series = [] # power taken from solar by BESS. note: power never taken from network by BESS.
    discarded_production_series = [] # solar power thrown away

    # 1 is not nominal but targeted (healthy) maximum charge.
    # we start with an empty battery, but not emptier than what's healthy for the batteries.
    
    #Remark from Jutka
    #For the sake of simplicity 0<= soc <=1
    #soc = 1 - maximal_depth_of_discharge
    #and will use only  maximal_depth_of_discharge percent of the real battery capacity
    soc = 0
    max_cap_of_battery = parameters.bess_capacity * parameters.maximal_depth_of_discharge
    cap_of_battery = soc * max_cap_of_battery

    time_interval = step_in_minutes / 60 # amount of time step in hours
    for i, (demand, production) in enumerate(zip(demand_np, production_np)):

        # these three are modified on the appropriate codepaths:
        consumption_from_solar = 0
        consumption_from_bess = 0
        consumption_from_network = 0
        charge_of_bess = 0
        
        #Remark: If the consumption stable for ex. 10 kwh
        # demand = 10
        unsatisfied_demand = demand
        remaining_production = production # max((production, 0))
        discarded_production = 0
        
        # crucially, we never charge the BESS from the network.
        # if demand >= production:
        #   all goes to demand
        #   we try to cover the rest from BESS
        #   we cover the rest from network
        # else:
        #   demand fully satisfied by production
        #   if exploitable production still remains:
        #     if is_battery_chargeable:
        #       charge_battery
        #     else:
        #       log discarded production

        #battery_charged_enough = (soc > 1- maximal_depth_of_discharge)
        is_battery_charged_enough = (soc > 0 )
        is_battery_chargeable = (soc < 1.0)

        if unsatisfied_demand >= remaining_production:
        #   all goes to demand
            consumption_from_solar = remaining_production
            unsatisfied_demand -= consumption_from_solar
            remaining_production=0 #edited by Jutka
        #   we try to cover the rest from BESS
            
            if unsatisfied_demand > 0:
                if is_battery_charged_enough:
                    # simplifying assumption for now:
                    # throughput is enough to completely fulfill extra demand.
                    # TODO get rid of simplifying assumption.
                    # Remarks from Jutka
                    # It is a very bed assumption. The reality needs, that the BESS has limited capacity. 
                    #
                    #                   
                    # cap_of_bess=soc * bess_capacity
                    # if cap_of_bess > unsatisfied_demand
                    #     consumption_from_bess = unsatisfied_demand
                    #     unsatisfied_demand = 0
                    #     cap_of_bess -= consumption_from_bess
                    #     soc = cap_of_bess / bess_capacity
                    # else: unsatisfied_demand -= cap_of_bess
                    #       cap_of_bess = 0
                    #       soc = 0
                    #       if unsatisfied_demand > 0
                    #          consumption_from_network = unsatisfied_demand
                    #          unsatisfied_demand = 0
                  
                    #Remarks: battery capacity is limited!
                   
                     if cap_of_battery >= unsatisfied_demand * time_interval :
                     
                       #discharge_of_bess = min ( unsatisfied_demand, bess_discharge )
                       #discharge = discharge_of_bess
                       #consumption_from_bess = discharge * time_interval
                       consumption_from_bess = unsatisfied_demand 
                       #unsatisfied_demand -= consumption_from_bess
                       unsatisfied_demand = 0
                       cap_of_battery -= consumption_from_bess * time_interval
                       soc = cap_of_battery / max_cap_of_battery
                       
                     else:
                      #discharge_of_bess = cap_of_battery /time_interval
                      #discharge = min( bess_discharge, discharge_of_bess )
                      consumption_from_bess = cap_of_battery / time_interval
                      unsatisfied_demand -= consumption_from_bess
                      cap_of_battery -=consumption_from_bess * time_interval
                      soc = cap_of_battery / max_cap_of_battery
                      consumption_from_network = unsatisfied_demand
                      unsatisfied_demand = 0 
                    #bess_sacrifice = consumption_from_bess / (1 - energy_loss) # kW
                    #energy = bess_sacrifice * time_interval # kWh
                    #soc -= energy / bess_capacity
                    # print("soc after discharge", soc)
                    #consumption_from_network = unsatisfied_demand
                    #unsatisfied_demand = 0 
                else:
                    #   we cover the rest from network
                  consumption_from_network = unsatisfied_demand
                  unsatisfied_demand = 0
        
        else:
        #   demand fully satisfied by production
          
            consumption_from_solar = unsatisfied_demand
            remaining_production -= unsatisfied_demand
            unsatisfied_demand = 0
        #   if exploitable production still remains:
            if remaining_production > 0:
                if is_battery_chargeable:
                    charge_of_bess =  remaining_production
                    energy = charge_of_bess * time_interval # kWh
                    #Remarks: battery alowed to charge until its capacity maximum
                    #energy_charge = min(energy, max_cap_of_battery-cap_of_battery)
                    cap_of_battery += energy
                    #soc += energy / bess_capacity
                    soc = cap_of_battery / max_cap_of_battery
                    #print("soc after charge", soc)
                else:
                    discarded_production = remaining_production

        soc_series.append(soc)
        consumption_from_solar_series.append(consumption_from_solar)
        consumption_from_network_series.append(consumption_from_network)
        consumption_from_bess_series.append(consumption_from_bess)
        charge_of_bess_series.append(charge_of_bess)
        discarded_production_series.append(discarded_production)

    soc_series = np.array(soc_series)
    consumption_from_solar_series = np.array(consumption_from_solar_series)
    consumption_from_network_series = np.array(consumption_from_network_series)
    consumption_from_bess_series = np.array(consumption_from_bess_series)
    charge_of_bess_series = np.array(charge_of_bess_series)
    discarded_production_series = np.array(discarded_production)

    results = pd.DataFrame({'soc_series': soc_series, 'consumption_from_solar': consumption_from_solar_series,
                            'consumption_from_network': consumption_from_network_series,
                            'consumption_from_bess': consumption_from_bess_series,
                            'charge_of_bess': charge_of_bess_series,
                            'discarded_production': discarded_production_series,
                            'Consumption': all_data['Consumption'],
                            'Production': all_data['Production']
                            })
    results = results.set_index(all_data.index)
    return results


def visualize_simulation(results, date_range):
    start_date, end_date = date_range

    fig = plt.figure()
    results = results.loc[start_date: end_date]

    x = results.index
    y = [results.consumption_from_solar, results.consumption_from_network, results.consumption_from_bess]
    plt.plot(x, y[0], label='Demand served by solar', color='yellow', linewidth=0.5)
    plt.plot(x, y[0]+y[1], label='Demand served by network', color='blue', linewidth=0.5)
    plt.plot(x, y[0]+y[1]+y[2], label='Demand served by BESS', color='green', linewidth=0.5)
    plt.fill_between(x, y[0]+y[1]+y[2], 0, color='green')
    plt.fill_between(x, y[0]+y[1], 0, color='blue')
    plt.fill_between(x, y[0], 0, color='yellow')

    # plt.xlim(datetime.datetime.fromisoformat(start_date), datetime.datetime.fromisoformat(end_date))

    plt.legend()
    return fig


def plotly_visualize_simulation(results, date_range):
    start_date, end_date = date_range
    results = results.loc[start_date: end_date]
    '''
    fig = px.area(results, x=results.index, y="consumption_from_network")
    return fig'''
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=results.index, y=results['consumption_from_network'],
        hoverinfo='x+y',
        mode='lines',
        line=dict(width=0.5, color='blue'),
        name='Network',
        stackgroup='one' # define stack group
    ))
    fig.add_trace(go.Scatter(
        x=results.index, y=results['consumption_from_solar'],
        hoverinfo='x+y',
        mode='lines',
        line=dict(width=0.5, color='orange'),
        name='Solar',
        stackgroup='one'
    ))
    fig.add_trace(go.Scatter(
        x=results.index, y=results['consumption_from_bess'],
        hoverinfo='x+y',
        mode='lines',
        line=dict(width=0.5, color='green'),
        name='BESS',
        stackgroup='one'
    ))
    fig.update_layout(
        height=400
    )
    return fig


def monthly_analysis(results):
    consumptions = []
    for month in range(1, 13):
        start = f"2021-{month:02}-01"
        end = f"2021-{month+1:02}-01"
        if month == 12:
            end = "2022-01-01"
        results_in_month = results[(results.index >= start) & (results.index < end)]

        total = results_in_month['Consumption'].sum()
        network = results_in_month['consumption_from_network'].sum()
        solar = results_in_month['consumption_from_solar'].sum()
        bess = results_in_month['consumption_from_bess'].sum()
        consumptions.append([network, solar, bess])

    consumptions = np.array(consumptions)
    step_in_minutes = results.index.freq.n
    # consumption is given in kW. each tick is step_in_minutes long (5mins, in fact)
    # we get consumption in kWh if we multiply sum by step_in_minutes/60
    consumptions_in_mwh = consumptions * (step_in_minutes / 60) / 1000
    return consumptions_in_mwh


def monthly_visualization(consumptions_in_mwh):
    percentages = consumptions_in_mwh[:, :3] / consumptions_in_mwh.sum(axis=1, keepdims=True) * 100
    bats = 0
    nws = 0
    sols = 0

    print("[Mwh]")
    print("==========================")
    print("month\tnetwork\tsolar\tbess")
    for month_minus_1 in range(12):
        network, solar, bess = consumptions_in_mwh[month_minus_1]
        print(f"{month_minus_1+1}\t{network:0.2f}\t{solar:0.2f}\t{bess:0.2f}")
        bats += bess
        nws += network
        sols += solar
    print(f"\t{nws:0.2f}\t{sols:0.2f}\t{bats:0.2f}")


    fig, ax = plt.subplots()

    ax.stackplot(range(1, 13),
                  percentages[:, 0], percentages[:, 1], percentages[:, 2],
                  labels=["hálózat", "egyenesen a naptól", "a naptól a BESS-en keresztül"])
    ax.set_ylim(0, 100)
    ax.legend()
    plt.title('A fogyasztás hány százalékát fedezte az adott hónapban?')
    plt.show()

    plt.stackplot(range(1, 13),
                  consumptions_in_mwh[:, 0], consumptions_in_mwh[:, 1], consumptions_in_mwh[:, 2],
                  labels=["hálózat", "egyenesen a naptól", "a naptól a BESS-en keresztül"])
    plt.legend()
    plt.title('Mennyi fogyasztást fedezett az adott hónapban? [MWh]')
    plt.show()


def main():
    parameters = Parameters()

    met_2021_data, cons_2021_data = read_datasets()

    add_production_field(met_2021_data, parameters)

    all_2021_data = interpolate_and_join(met_2021_data, cons_2021_data)

    results = simulator_with_solar(all_2021_data, parameters)

    fig = visualize_simulation(results, date_range=("2021-02-01", "2021-03-01"))
    plt.show()

    consumptions_in_mwh = monthly_analysis(results)
    monthly_visualization(consumptions_in_mwh)


# main() ; exit()


met_2021_data, cons_2021_data = read_datasets()


def recalculate(**uiParameters):
    fixed_consumption = uiParameters['fixed_consumption']
    del uiParameters['fixed_consumption']

    parameters = Parameters()
    for k, v in uiParameters.items():
        setattr(parameters, k, v)

    add_production_field(met_2021_data, parameters)
    all_2021_data = interpolate_and_join(met_2021_data, cons_2021_data)

    if fixed_consumption:
        all_2021_data['Consumption'] = 10

    results = simulator_with_solar(all_2021_data, parameters)
    return results


def ui_refresh(solar_cell_num, bess_nominal_capacity, fixed_consumption):
    results = recalculate(solar_cell_num=solar_cell_num, bess_nominal_capacity=bess_nominal_capacity, fixed_consumption=fixed_consumption)

    fig1 = plotly_visualize_simulation(results, date_range=("2021-02-01", "2021-02-07"))
    fig2 = plotly_visualize_simulation(results, date_range=("2021-08-02", "2021-08-08"))

    # (12, 3), the 3 indexed with (network, solar, bess):
    consumptions_in_mwh = monthly_analysis(results)

    network, solar, bess = consumptions_in_mwh.sum(axis=0)
    html = ""
    for column, column_name in zip((network, solar, bess), ("network", "solar", "BESS")):
        html += f"Yearly consumption satisfied by {column_name}: {column:0.2f} MWh<br>"

    return (fig1, fig2, html)


ui = gr.Interface(
    ui_refresh,
    inputs = [
        gr.Slider(0, 2000, 114, label="Solar cell number"),
        gr.Slider(0, 1000, 330, label="BESS nominal capacity"),
        gr.Checkbox(value=False, label="Fixed consumption")],
    outputs = ["plot", "plot", "html"],
    live=True,
)

ui.launch()