File size: 5,986 Bytes
64b066d
 
 
3fd575d
 
 
64b066d
 
41bce18
64b066d
 
 
 
41bce18
64b066d
 
41bce18
64b066d
 
 
 
 
3fd575d
 
 
 
 
 
 
 
41bce18
3fd575d
64b066d
41bce18
3fd575d
 
 
 
64b066d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41bce18
 
 
3fd575d
41bce18
 
 
 
 
 
 
1fee7d7
41bce18
 
 
 
 
 
64b066d
 
 
41bce18
 
 
64b066d
 
41bce18
64b066d
1fee7d7
64b066d
 
41bce18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b066d
41bce18
 
 
64b066d
 
 
 
 
 
 
 
 
 
41bce18
64b066d
 
41bce18
64b066d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd575d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from statsforecast import StatsForecast
from statsforecast.models import (
    ARIMA,
    AutoARIMA,
    AutoETS,
    AutoCES,
    DynamicOptimizedTheta,
    MSTL,
    SeasonalNaive,
)
from datasetsforecast.losses import rmse, mae


os.environ["NIXTLA_NUMBA_RELEASE_GIL"] = "1"
os.environ["NIXTLA_NUMBA_CACHE"] = "1"


data = pd.read_csv("terheles_fixed.tsv", sep="\t")
data['ds'] = pd.to_datetime(data['Korrigált időpont'])
data['y'] = data['Hatásos teljesítmény']

data = data[['ds', 'y']]
data['unique_id'] = 1

data = data[data['ds'] < '2019-03-01']
Y_df = data

train_df = Y_df[Y_df['ds'] < '2019-02-01']


horizon = 4 * 24 * 7 # 7 days



def ensemble_forecasts(
    fcsts_df,
    quantiles,
    name_models,
    model_name,
) -> pd.DataFrame:
    fcsts_df[model_name] = fcsts_df[name_models].mean(axis=1).values  # type: ignore
    # compute quantiles based on the mean of the forecasts
    sigma_models = []
    for model in name_models:
        fcsts_df[f"sigma_{model}"] = fcsts_df[f"{model}-hi-68.27"] - fcsts_df[model]
        sigma_models.append(f"sigma_{model}")
    fcsts_df[f"std_{model_name}"] = (
        fcsts_df[sigma_models].pow(2).sum(axis=1).div(len(sigma_models) ** 2).pow(0.5)
    )
    z = norm.ppf(quantiles)
    q_cols = []
    for q, zq in zip(quantiles, z):
        q_col = f"{model_name}-q-{q}"
        fcsts_df[q_col] = fcsts_df[model_name] + zq * fcsts_df[f"std_{model_name}"]
        q_cols.append(q_col)
    fcsts_df = fcsts_df[["unique_id", "ds"] + [model_name] + q_cols]
    return fcsts_df


def run_statistical_ensemble(
    train_df: pd.DataFrame,
    horizon: int,
    freq: str,
    seasonality: int,
    quantiles,
):
    os.environ["NIXTLA_ID_AS_COL"] = "true"
    models = [
        AutoARIMA(season_length=seasonality),
        AutoETS(season_length=seasonality),
        AutoCES(season_length=seasonality),
        DynamicOptimizedTheta(season_length=seasonality),
    ]
    init_time = time()
    series_per_core = 15
    n_series = train_df["unique_id"].nunique()
    n_jobs = min(n_series // series_per_core, os.cpu_count())
    sf = StatsForecast(
        models=models,
        freq=freq,
        n_jobs=n_jobs,
    )
    fcsts_df = sf.forecast(df=train_df, h=horizon, level=[68.27])
    name_models = [repr(model) for model in models]
    model_name = "StatisticalEnsemble"
    fcsts_df = ensemble_forecasts(
        fcsts_df,
        quantiles,
        name_models,
        model_name,
    )
    total_time = time() - init_time
    return fcsts_df, total_time, model_name


# unlike MSTL, the others only allow a single season_length:
seasonality = 4 * 24 * 1 # 1 day

models = [
        MSTL(
            season_length=[4 * 24, 4 * 24 * 7], # seasonalities of the time series
            trend_forecaster=AutoARIMA() # model used to forecast trend
        ),
        SeasonalNaive(season_length=seasonality)
]

EXTENDED_TEST = True
if EXTENDED_TEST:
    models += [
        # AutoARIMA(season_length=4 * 24) is just too slow, never even finishes,
        # spends all its time in scipy bfgs.
        # which is weird, because it's works okay as trend-detector of MSTL.
        AutoARIMA(),
        AutoETS(season_length=seasonality),
        AutoCES(season_length=seasonality),
        DynamicOptimizedTheta(season_length=seasonality),
    ]


freq = '15min'
sf = StatsForecast(
        models=models,
        freq=freq,
        n_jobs=-1,
)


model_names = [repr(model) for model in models]


n_windows = len(train_df) // horizon - 1
print("crossvalidation with", n_windows, "windows")
print("models:", ", ".join(model_names))
crossvalidation_df = sf.cross_validation(df=train_df, h=horizon, step_size=horizon, n_windows=n_windows)

for model_name in model_names:
    rmse_crossval = rmse(crossvalidation_df['y'], crossvalidation_df[model_name])
    mae_crossval = mae(crossvalidation_df['y'], crossvalidation_df[model_name])
    print(model_name, "RMSE", rmse_crossval, "MAE", mae_crossval)


exit()

sf.fit(train_df)

sf.fitted_[0, 0].model_.tail(4 * 24 * 7 * 2).plot(subplots=True, grid=True)
plt.tight_layout()
plt.show()


print("starting forecast, dataset size", len(train_df))
# Y_hat_df = sf.forecast(df=train_df, h=horizon, level=[68.27])
Y_hat_df = sf.predict(h=horizon, level=[68.27])


print(Y_hat_df)

Y_hat_df = Y_hat_df.reset_index()

fig, ax = plt.subplots(1, 1, figsize = (20, 7))

# plot_df = pd.concat([Y_df, Y_hat_df]).set_index('ds') # Concatenate the train and forecast dataframes
# plot_df[['y', 'LSTM', 'NHITS']].plot(ax=ax, linewidth=2)

plot_Y_df = Y_df # [Y_df['ds'] > '2019-07-01']
plot_Y_df = plot_Y_df.set_index('ds')[['y']]
plot_Y_df.plot(ax=ax, linewidth=1)
Y_hat_df.set_index('ds').plot(ax=ax, linewidth=1)


ax.set_title('AirPassengers Forecast', fontsize=22)
ax.set_ylabel('Monthly Passengers', fontsize=20)
ax.set_xlabel('Timestamp [t]', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()

plt.savefig("neuralforecast.pdf")



exit()






















quantiles = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
fcst_df, total_time, model_name = run_statistical_ensemble(
    train_df,
    horizon=horizon,
    freq='15m',
    seasonality=4 * 24 * 7,
    quantiles=quantiles
)


nf.fit(df=train_df)

Y_hat_df = nf.predict()

print(Y_df)

Y_hat_df = Y_hat_df.reset_index()

fig, ax = plt.subplots(1, 1, figsize = (20, 7))

# plot_df = pd.concat([Y_df, Y_hat_df]).set_index('ds') # Concatenate the train and forecast dataframes
# plot_df[['y', 'LSTM', 'NHITS']].plot(ax=ax, linewidth=2)

plot_Y_df = Y_df[Y_df['ds'] > '2019-07-01']
plot_Y_df = plot_Y_df.set_index('ds')[['y']]
plot_Y_df.plot(ax=ax, linewidth=1)
Y_hat_df.set_index('ds')[['PatchTST', 'NHITS']].plot(ax=ax, linewidth=1)


ax.set_title('AirPassengers Forecast', fontsize=22)
ax.set_ylabel('Monthly Passengers', fontsize=20)
ax.set_xlabel('Timestamp [t]', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()

plt.savefig("neuralforecast.pdf")