File size: 6,488 Bytes
f1abbf3
 
 
 
 
 
 
 
 
6f8bbb1
f1abbf3
 
 
6f8bbb1
 
 
 
f1abbf3
 
 
 
 
 
6f8bbb1
f1abbf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f8bbb1
f1abbf3
6f8bbb1
f1abbf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f8bbb1
 
 
 
 
f1abbf3
 
6f8bbb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1abbf3
6f8bbb1
 
f1abbf3
6f8bbb1
 
 
 
 
 
f1abbf3
6f8bbb1
 
 
f1abbf3
 
6f8bbb1
 
f1abbf3
6f8bbb1
f1abbf3
 
6f8bbb1
 
 
 
 
 
 
 
 
f1abbf3
6f8bbb1
 
 
 
 
f1abbf3
 
6f8bbb1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from prophet import Prophet
import holidays
import logging
from sklearn.metrics import mean_absolute_error


PREDICTION_LOWER_BOUND = 0 # 15 [kW]
print("do not forget about hardwired prediction lower bound", PREDICTION_LOWER_BOUND, "kW")


def get_holidays():
    hungarian_holidays = holidays.Hungary(years=range(2019, 2031))
    holiday_df = pd.DataFrame(list(hungarian_holidays.items()), columns=['ds', 'holiday'])
    return holiday_df


def prophet_backend(train_data, forecast_horizon):
    # Initialize and train the Prophet model using the training data
    model = Prophet(seasonality_mode='multiplicative', growth='flat',
        yearly_seasonality=False, weekly_seasonality=True, daily_seasonality=True,
        holidays=get_holidays())

    # we can also play with setting daily_seasonality=False above, and then manually adding
    # model.add_seasonality("daily", 1, fourier_order=10, prior_scale=100, mode="multiplicative")
    # ...it didn't really work though. bumping the fourier_order helps, but makes the model slow.
    # the rest didn't have much effect.

    model.fit(train_data)

    # Create a DataFrame with future timestamps for the evaluation period
    future = model.make_future_dataframe(periods=forecast_horizon, freq='15T', include_history=False)

    # Make predictions for the evaluation period
    forecast = model.predict(future)
    assert len(forecast) == forecast_horizon

    # we never predict below zero, although prophet happily does.
    for key in ('yhat', 'yhat_lower', 'yhat_upper'):
        forecast[key] = np.maximum(forecast[key], 0)

    return forecast, model


def prediction_task(backend, df, split_date, forecast_horizon):
    # Split the data into training (past) and evaluation (future) sets
    train_data = df[df['ds'] <= split_date]
    eval_data = df[df['ds'] > split_date]
    eval_data = eval_data.head(forecast_horizon)

    forecast, model = backend(train_data, forecast_horizon)

    mae = mean_absolute_error(eval_data['y'], forecast['yhat'])

    do_vis = False
    if do_vis:
        future = model.make_future_dataframe(periods=forecast_horizon, freq='15T', include_history=True)
        forecast = model.predict(future)

        plt.figure(figsize=(12, 6))
        plt.plot(eval_data['ds'], eval_data['y'], label='Actual', color='blue')
        plt.plot(forecast['ds'], forecast['yhat'], label='Predicted', color='red')
        plt.fill_between(forecast['ds'], forecast['yhat_lower'], forecast['yhat_upper'], color='pink', alpha=0.5, label='Uncertainty')
        plt.xlabel('Timestamp')
        plt.ylabel('Value')
        plt.title('Actual vs. Predicted Values')
        plt.legend()
        plt.grid(True)
        plt.show()

        fig1 = model.plot(forecast)
        plt.plot(eval_data['ds'], eval_data['y'], c='r')
        plt.show()

        fig2 = model.plot_components(forecast)
        plt.show()
        exit()

    return mae, eval_data['y'].mean()


def quiet_logging():
    logger = logging.getLogger('cmdstanpy')
    logger.addHandler(logging.NullHandler())
    logger.propagate = False
    logger.setLevel(logging.CRITICAL)


def build_predictor(training_data: pd.Series):
    quiet_logging()
    training_data_frame = pd.DataFrame({'ds': training_data.index, 'y': training_data})
    model = Prophet(seasonality_mode='multiplicative', growth='flat',
        yearly_seasonality=False, weekly_seasonality=True, daily_seasonality=True,
        holidays=get_holidays())

    # we can also play with setting daily_seasonality=False above, and then manually adding
    # model.add_seasonality("daily", 1, fourier_order=10, prior_scale=100, mode="multiplicative")
    # ...it didn't really work though. bumping the fourier_order helps, but makes the model slow.
    # the rest didn't have much effect.

    model.fit(training_data_frame)
    return model


def make_prediction(prophet_model: Prophet, test_data: pd.Series, batch_size_in_days: int):
    date_range = pd.date_range(start=test_data.index[0], end=test_data.index[-1], freq=f'{batch_size_in_days}d')
    for split_date in date_range:
        future = prophet_model.make_future_dataframe(periods=forecast_horizon, freq='15T', include_history=False)

        # Make predictions for the evaluation period
        forecast = prophet_model.predict(future)
        assert len(forecast) == forecast_horizon

        # we never predict below zero, although prophet happily does.
        for key in ('yhat', 'yhat_lower', 'yhat_upper'):
            forecast[key] = np.maximum(forecast[key], 0)

        return forecast


def main():
    quiet_logging()

    cons_filename = 'pq_terheles_2021_adatok.tsv'

    df = pd.read_csv(cons_filename, sep='\t', skipinitialspace=True, na_values='n/a', decimal=',')
    df['Time'] = pd.to_datetime(df['Korrigált időpont'], format='%m/%d/%y %H:%M')
    df = df.set_index('Time')
    df['Consumption'] = df['Hatásos teljesítmény [kW]']

    df['ds'] = df.index
    df['y'] = df['Consumption']

    # we slightly alter both the train and the test
    # because we have an almost constant shift, and the model is multiplicative.
    # we add it back in the end.
    print("values below PREDICTION_LOWER_BOUND", PREDICTION_LOWER_BOUND, ":",
        (df['y'] <= PREDICTION_LOWER_BOUND).sum(), "/", len(df['y']))
    df['y'] = (df['y'] - PREDICTION_LOWER_BOUND).clip(0.0)

    # TODO 15 minutes timestep hardwired!
    forecast_horizon = 7 * 24 * 4
    print("forecast horizon", forecast_horizon // 4, "hours")


    start_date = '2021-06-01'
    end_date = '2021-10-24'

    weekly_date_range = pd.date_range(start=start_date, end=end_date, freq='8d')


    maes = []
    mean_values = []
    for split_date in weekly_date_range:
        # prophet_backend is the only backend currently
        mae, mean_value = prediction_task(prophet_backend, df, split_date, forecast_horizon)
        mean_value += PREDICTION_LOWER_BOUND
        maes.append(mae)
        mean_values.append(mean_value)
        print(split_date, "Mean Absolute Error", mae, "MAE/true mean", mae / mean_value)

    maes = np.array(maes)
    mean_values = np.array(mean_values)
    aggregate_mae = maes.mean()
    print("Mean Absolute Error over whole date range", weekly_date_range[0], "-", weekly_date_range[-1], ":", aggregate_mae)
    print("Mean Absolute Error / true mean over whole date range", aggregate_mae / mean_values.mean())


if __name__ == '__main__':
    main()