File size: 10,913 Bytes
cae21cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import math

import torch
from torch import nn
from torch.nn import functional as F

from TTS.tts.layers.generic.normalization import LayerNorm2
from TTS.tts.layers.vits.transforms import piecewise_rational_quadratic_transform


class DilatedDepthSeparableConv(nn.Module):
    def __init__(self, channels, kernel_size, num_layers, dropout_p=0.0) -> torch.tensor:
        """Dilated Depth-wise Separable Convolution module.

        ::
            x |-> DDSConv(x) -> LayerNorm(x) -> GeLU(x) -> Conv1x1(x) -> LayerNorm(x) -> GeLU(x) -> + -> o
              |-------------------------------------------------------------------------------------^

        Args:
            channels ([type]): [description]
            kernel_size ([type]): [description]
            num_layers ([type]): [description]
            dropout_p (float, optional): [description]. Defaults to 0.0.

        Returns:
            torch.tensor: Network output masked by the input sequence mask.
        """
        super().__init__()
        self.num_layers = num_layers

        self.convs_sep = nn.ModuleList()
        self.convs_1x1 = nn.ModuleList()
        self.norms_1 = nn.ModuleList()
        self.norms_2 = nn.ModuleList()
        for i in range(num_layers):
            dilation = kernel_size**i
            padding = (kernel_size * dilation - dilation) // 2
            self.convs_sep.append(
                nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding)
            )
            self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
            self.norms_1.append(LayerNorm2(channels))
            self.norms_2.append(LayerNorm2(channels))
        self.dropout = nn.Dropout(dropout_p)

    def forward(self, x, x_mask, g=None):
        """
        Shapes:
            - x: :math:`[B, C, T]`
            - x_mask: :math:`[B, 1, T]`
        """
        if g is not None:
            x = x + g
        for i in range(self.num_layers):
            y = self.convs_sep[i](x * x_mask)
            y = self.norms_1[i](y)
            y = F.gelu(y)
            y = self.convs_1x1[i](y)
            y = self.norms_2[i](y)
            y = F.gelu(y)
            y = self.dropout(y)
            x = x + y
        return x * x_mask


class ElementwiseAffine(nn.Module):
    """Element-wise affine transform like no-population stats BatchNorm alternative.

    Args:
        channels (int): Number of input tensor channels.
    """

    def __init__(self, channels):
        super().__init__()
        self.translation = nn.Parameter(torch.zeros(channels, 1))
        self.log_scale = nn.Parameter(torch.zeros(channels, 1))

    def forward(self, x, x_mask, reverse=False, **kwargs):  # pylint: disable=unused-argument
        if not reverse:
            y = (x * torch.exp(self.log_scale) + self.translation) * x_mask
            logdet = torch.sum(self.log_scale * x_mask, [1, 2])
            return y, logdet
        x = (x - self.translation) * torch.exp(-self.log_scale) * x_mask
        return x


class ConvFlow(nn.Module):
    """Dilated depth separable convolutional based spline flow.

    Args:
        in_channels (int): Number of input tensor channels.
        hidden_channels (int): Number of in network channels.
        kernel_size (int): Convolutional kernel size.
        num_layers (int): Number of convolutional layers.
        num_bins (int, optional): Number of spline bins. Defaults to 10.
        tail_bound (float, optional): Tail bound for PRQT. Defaults to 5.0.
    """

    def __init__(
        self,
        in_channels: int,
        hidden_channels: int,
        kernel_size: int,
        num_layers: int,
        num_bins=10,
        tail_bound=5.0,
    ):
        super().__init__()
        self.num_bins = num_bins
        self.tail_bound = tail_bound
        self.hidden_channels = hidden_channels
        self.half_channels = in_channels // 2

        self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
        self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers, dropout_p=0.0)
        self.proj = nn.Conv1d(hidden_channels, self.half_channels * (num_bins * 3 - 1), 1)
        self.proj.weight.data.zero_()
        self.proj.bias.data.zero_()

    def forward(self, x, x_mask, g=None, reverse=False):
        x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
        h = self.pre(x0)
        h = self.convs(h, x_mask, g=g)
        h = self.proj(h) * x_mask

        b, c, t = x0.shape
        h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2)  # [b, cx?, t] -> [b, c, t, ?]

        unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.hidden_channels)
        unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.hidden_channels)
        unnormalized_derivatives = h[..., 2 * self.num_bins :]

        x1, logabsdet = piecewise_rational_quadratic_transform(
            x1,
            unnormalized_widths,
            unnormalized_heights,
            unnormalized_derivatives,
            inverse=reverse,
            tails="linear",
            tail_bound=self.tail_bound,
        )

        x = torch.cat([x0, x1], 1) * x_mask
        logdet = torch.sum(logabsdet * x_mask, [1, 2])
        if not reverse:
            return x, logdet
        return x


class StochasticDurationPredictor(nn.Module):
    """Stochastic duration predictor with Spline Flows.

    It applies Variational Dequantization and Variational Data Augmentation.

    Paper:
        SDP: https://arxiv.org/pdf/2106.06103.pdf
        Spline Flow: https://arxiv.org/abs/1906.04032

    ::
        ## Inference

        x -> TextCondEncoder() -> Flow() -> dr_hat
        noise ----------------------^

        ## Training
                                                                              |---------------------|
        x -> TextCondEncoder() -> + -> PosteriorEncoder() -> split() -> z_u, z_v -> (d - z_u) -> concat() -> Flow() -> noise
        d -> DurCondEncoder()  -> ^                                                    |
        |------------------------------------------------------------------------------|

    Args:
        in_channels (int): Number of input tensor channels.
        hidden_channels (int): Number of hidden channels.
        kernel_size (int): Kernel size of convolutional layers.
        dropout_p (float): Dropout rate.
        num_flows (int, optional): Number of flow blocks. Defaults to 4.
        cond_channels (int, optional): Number of channels of conditioning tensor. Defaults to 0.
    """

    def __init__(
        self,
        in_channels: int,
        hidden_channels: int,
        kernel_size: int,
        dropout_p: float,
        num_flows=4,
        cond_channels=0,
        language_emb_dim=0,
    ):
        super().__init__()

        # add language embedding dim in the input
        if language_emb_dim:
            in_channels += language_emb_dim

        # condition encoder text
        self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
        self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p)
        self.proj = nn.Conv1d(hidden_channels, hidden_channels, 1)

        # posterior encoder
        self.flows = nn.ModuleList()
        self.flows.append(ElementwiseAffine(2))
        self.flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)]

        # condition encoder duration
        self.post_pre = nn.Conv1d(1, hidden_channels, 1)
        self.post_convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p)
        self.post_proj = nn.Conv1d(hidden_channels, hidden_channels, 1)

        # flow layers
        self.post_flows = nn.ModuleList()
        self.post_flows.append(ElementwiseAffine(2))
        self.post_flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)]

        if cond_channels != 0 and cond_channels is not None:
            self.cond = nn.Conv1d(cond_channels, hidden_channels, 1)

        if language_emb_dim != 0 and language_emb_dim is not None:
            self.cond_lang = nn.Conv1d(language_emb_dim, hidden_channels, 1)

    def forward(self, x, x_mask, dr=None, g=None, lang_emb=None, reverse=False, noise_scale=1.0):
        """
        Shapes:
            - x: :math:`[B, C, T]`
            - x_mask: :math:`[B, 1, T]`
            - dr: :math:`[B, 1, T]`
            - g: :math:`[B, C]`
        """
        # condition encoder text
        x = self.pre(x)
        if g is not None:
            x = x + self.cond(g)

        if lang_emb is not None:
            x = x + self.cond_lang(lang_emb)

        x = self.convs(x, x_mask)
        x = self.proj(x) * x_mask

        if not reverse:
            flows = self.flows
            assert dr is not None

            # condition encoder duration
            h = self.post_pre(dr)
            h = self.post_convs(h, x_mask)
            h = self.post_proj(h) * x_mask
            noise = torch.randn(dr.size(0), 2, dr.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
            z_q = noise

            # posterior encoder
            logdet_tot_q = 0.0
            for idx, flow in enumerate(self.post_flows):
                z_q, logdet_q = flow(z_q, x_mask, g=(x + h))
                logdet_tot_q = logdet_tot_q + logdet_q
                if idx > 0:
                    z_q = torch.flip(z_q, [1])

            z_u, z_v = torch.split(z_q, [1, 1], 1)
            u = torch.sigmoid(z_u) * x_mask
            z0 = (dr - u) * x_mask

            # posterior encoder - neg log likelihood
            logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
            nll_posterior_encoder = (
                torch.sum(-0.5 * (math.log(2 * math.pi) + (noise**2)) * x_mask, [1, 2]) - logdet_tot_q
            )

            z0 = torch.log(torch.clamp_min(z0, 1e-5)) * x_mask
            logdet_tot = torch.sum(-z0, [1, 2])
            z = torch.cat([z0, z_v], 1)

            # flow layers
            for idx, flow in enumerate(flows):
                z, logdet = flow(z, x_mask, g=x, reverse=reverse)
                logdet_tot = logdet_tot + logdet
                if idx > 0:
                    z = torch.flip(z, [1])

            # flow layers - neg log likelihood
            nll_flow_layers = torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) - logdet_tot
            return nll_flow_layers + nll_posterior_encoder

        flows = list(reversed(self.flows))
        flows = flows[:-2] + [flows[-1]]  # remove a useless vflow
        z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
        for flow in flows:
            z = torch.flip(z, [1])
            z = flow(z, x_mask, g=x, reverse=reverse)

        z0, _ = torch.split(z, [1, 1], 1)
        logw = z0
        return logw