File size: 11,804 Bytes
f60ce93
7d04c1c
0059ef7
 
df058d7
bcf8eca
df058d7
a2e3d4b
a828d88
8a6cf88
f8a37b1
 
 
 
8a6cf88
a828d88
f8a37b1
a828d88
 
 
 
 
 
 
9ccc625
33c190e
8a6cf88
0059ef7
0685cd6
df058d7
66ad10a
0059ef7
8a6cf88
df058d7
 
0059ef7
df058d7
8a6cf88
df058d7
45b475d
8a6cf88
 
 
 
45b475d
659d788
8a6cf88
a044018
8a6cf88
 
cbf0145
a2e3d4b
df058d7
d53ce83
e502fb9
3592cb3
8a6cf88
3592cb3
df058d7
 
 
a828d88
8a6cf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e3d4b
8a6cf88
 
a2e3d4b
8a6cf88
 
 
 
df058d7
8a6cf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ccc625
9786ddd
8a6cf88
 
 
 
 
 
 
 
 
df058d7
8a6cf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8a37b1
 
 
 
8a6cf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8a37b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6cf88
f8a37b1
 
a044018
8a6cf88
 
f8a37b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee1fb8
 
66e1901
6ee1fb8
f8a37b1
6ee1fb8
f8a37b1
 
 
 
 
 
6ee1fb8
f8a37b1
 
6ee1fb8
f8a37b1
 
 
 
 
 
 
6ee1fb8
f8a37b1
 
6ee1fb8
f8a37b1
 
 
 
 
 
 
66e1901
f8a37b1
 
6ee1fb8
f8a37b1
 
 
 
 
 
 
 
6ee1fb8
f8a37b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import streamlit as st
import re
import numpy as np
import pandas as pd
import pickle
import sklearn
import catboost
import shap
import plotly.tools as tls
from dash import dcc
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
import plotly.express as px
import matplotlib.pyplot as plt
import plotly.graph_objs as go
import plotly.graph_objects as go
try:
    import matplotlib.pyplot as pl
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.ticker import MaxNLocator
except ImportError:
    pass

st.set_option('deprecation.showPyplotGlobalUse', False)

seed = 0

annotations = pd.read_csv("all_genes_imputed_features.csv")
annotations.fillna(0, inplace=True)
annotations = annotations.set_index("Gene")

model_path = "best_model_fitted.pkl"
with open(model_path, 'rb') as file:
    catboost_model = pickle.load(file)

probabilities = catboost_model.predict_proba(annotations)
prob_df = pd.DataFrame(probabilities, index=annotations.index, columns=['Probability_Most_Likely', 'Probability_Probable', 'Probability_Least_Likely'])
df_total = pd.concat([prob_df, annotations], axis=1)

# Create tabs for navigation
with st.sidebar:
    st.sidebar.title("Navigation")
    tab = st.sidebar.radio("Go to", ("Gene Prioritisation", "Interactive SHAP Plot", "Supervised SHAP Clustering"))

st.title('Blood Pressure Gene Prioritisation Post-GWAS')
st.markdown("""A machine learning pipeline for predicting disease-causing genes post-genome-wide association study in blood pressure.""")

# Define a function to collect genes from input
collect_genes = lambda x: [str(i) for i in re.split(",|,\s+|\s+", x) if i != ""]
input_gene_list = st.text_input("Input a list of multiple HGNC genes (enter comma separated):")
gene_list = collect_genes(input_gene_list)
explainer = shap.TreeExplainer(catboost_model)

@st.cache_data
def convert_df(df):
    return df.to_csv(index=False).encode('utf-8')

probability_columns = ['Probability_Most_Likely', 'Probability_Probable', 'Probability_Least_Likely']
features_list = [column for column in df_total.columns if column not in probability_columns]
features = df_total[features_list]

# Page 1: Gene Prioritisation
if tab == "Gene Prioritisation":
    if len(gene_list) > 1:
        df = df_total[df_total.index.isin(gene_list)]
        df['Gene'] = df.index
        df.reset_index(drop=True, inplace=True)
        
        required_columns = ['Gene'] + probability_columns + [column for column in df.columns if column not in probability_columns and column != 'Gene']
        df = df[required_columns]
        st.dataframe(df)
        
        output = df[['Gene'] + probability_columns]
        csv = convert_df(output)
        st.download_button("Download Gene Prioritisation", csv, "bp_gene_prioritisation.csv", "text/csv", key='download-csv')
        
        df_shap = df.drop(columns=probability_columns + ['Gene'])
        shap_values = explainer.shap_values(df_shap)

        col1, col2 = st.columns(2)
        class_names = ["Most likely", "Probable", "Least likely"]

        with col1:
            st.subheader("Global SHAP Summary Plot")
            shap.summary_plot(shap_values, df_shap, plot_type="bar", class_names=class_names)
            st.pyplot(bbox_inches='tight', clear_figure=True)

        with col2:
            st.subheader(f"{class_names[0]} Gene Prediction")
            shap.summary_plot(shap_values[0], df_shap)
            st.pyplot(bbox_inches='tight', clear_figure=True)

        col3, col4 = st.columns(2)

        with col3:
            st.subheader(f"{class_names[1]} Gene Prediction")
            shap.summary_plot(shap_values[1], df_shap)
            st.pyplot(bbox_inches='tight', clear_figure=True)

        with col4:
            st.subheader(f"{class_names[2]} Gene Prediction")
            shap.summary_plot(shap_values[2], df_shap)
            st.pyplot(bbox_inches='tight', clear_figure=True)

    else:
        pass

    input_gene = st.text_input("Input an individual HGNC gene:")
    if input_gene:
        df2 = df_total[df_total.index == input_gene]
        class_names = ["Most likely", "Probable", "Least likely"]
        if not df2.empty:
            df2['Gene'] = df2.index
            df2.reset_index(drop=True, inplace=True)
            
            required_columns = ['Gene'] + probability_columns + [col for col in df2.columns if col not in probability_columns and col != 'Gene']
            df2 = df2[required_columns]
            st.dataframe(df2)

            if ' ' in input_gene or ',' in input_gene:
                st.write('Input Error: Please input only a single HGNC gene name with no white spaces or commas.')
            else:
                df2_shap = df_total.loc[[input_gene], [col for col in df_total.columns if col not in probability_columns + ['Gene']]]
                print(df2_shap.columns)
                shap_values = explainer.shap_values(df2_shap)
                shap.getjs()

                for i in range(3):
                    st.subheader(f"Force Plot for {class_names[i]} Prediction")
                    force_plot = shap.force_plot(
                        explainer.expected_value[i],
                        shap_values[i],
                        df2_shap, 
                        matplotlib=True,
                        show=False
                    )
                    st.pyplot(fig=force_plot)              
        else:
            st.write("Gene not found in the dataset.")
    else:
        pass

    url = f"https://astrazeneca-cgr-publications.github.io/DrugnomeAI/geneview.html?gene={input_gene}"
    markdown_link = f"[{input_gene} druggability in DrugnomeAI]({url})"
    st.markdown(markdown_link, unsafe_allow_html=True)

    st.markdown("""
    ### Total Gene Prioritisation Results for All Genes:
    """)

    df_total_output = df_total
    df_total_output['Gene'] = df_total_output.index
    #df_total_output.reset_index(drop=True, inplace=True)
    st.dataframe(df_total_output)
    csv = convert_df(df_total_output)
    st.download_button("Download Gene Prioritisation", csv, "all_genes_bp_prioritisation.csv", "text/csv", key='download-all-csv')


elif tab == "Interactive SHAP Plot":
    st.title("Interactive SHAP Plot")
    if len(gene_list) > 1:
        df = df_total[df_total.index.isin(gene_list)]
        df['Gene'] = df.index
        df.reset_index(drop=True, inplace=True)
        
        required_columns = ['Gene'] + probability_columns + [column for column in df.columns if column not in probability_columns and column != 'Gene']
        df = df[required_columns]
        st.dataframe(df)
        
        output = df[['Gene'] + probability_columns]
        csv = convert_df(output)
        st.download_button("Download Gene Prioritisation", csv, "bp_gene_prioritisation.csv", "text/csv", key='download-csv')
        
        df_shap = df.drop(columns=probability_columns + ['Gene'])
        shap_values = explainer.shap_values(df_shap)
        
        shap_values_first_class = shap_values[0]
        feature_importance = np.abs(shap_values_first_class).mean(axis=0)
        top_features_indices = np.argsort(feature_importance)[-20:]
        features_top = df_shap.columns[top_features_indices][::-1]
        shap_values_top = shap_values_first_class[:, top_features_indices][..., ::-1]

        # Prepare data for a single trace
        x_values = []
        y_values = []
        hover_texts = []
        for i, feature_name in enumerate(features_top):
            for gene, value in zip(df['Gene'], shap_values_top[:, i]):
                x_values.append(value)
                y_values.append(feature_name)
                hover_texts.append(f'{gene}: {value:.3f}')

        # Create a single trace for the plot
        fig = go.Figure(data=go.Scatter(
            x=x_values,
            y=y_values,
            mode='markers',
            marker=dict(
                color=x_values,  # Set color to SHAP values
                colorbar=dict(title="SHAP Value"),
                colorscale=[(0, "blue"), (1, "red")],  # Blue to Red color scale
            ),
            text=hover_texts,  # Set hover text
            hoverinfo="text+x"  # Display hover text and x-value (SHAP value)
        ))

        fig.update_layout(
            title="SHAP Summary Plot - Top 20 Features",
            xaxis_title="SHAP Value",
            yaxis=dict(autorange="reversed", title="Feature"),
            showlegend=False,
        )

        st.plotly_chart(fig, use_container_width=True)
        st.caption("SHAP Summary Plot of All Input Genes - Top 20 Features")

elif tab == "Supervised SHAP Clustering":
    st.title("Supervised SHAP Clustering")
    training_genes = pd.read_csv("training_cleaned.csv")
    training_genes = training_genes[training_genes['BPlabel_encoded'] == 0]
    training_genes.set_index('Gene', inplace=True)

    # Calculate SHAP values for the full dataset
    shap_values_full = explainer.shap_values(annotations)
    shap_values_full_array = np.array(shap_values_full[0])

    # Apply PCA to reduce dimensionality for visualization
    pca = PCA(n_components=2)
    shap_values_pca = pca.fit_transform(shap_values_full_array)

    # Apply clustering on the PCA-reduced SHAP values
    kmeans = KMeans(n_clusters=3, random_state=0).fit(shap_values_pca)

    # Get cluster labels for each point in the dataset
    labels = kmeans.labels_

    # Prepare a DataFrame for visualization
    df_for_plot = pd.DataFrame({
        'PCA_1': shap_values_pca[:, 0],
        'PCA_2': shap_values_pca[:, 1],
        'Cluster': labels.astype(str),
        'Gene': annotations.index,
        'Type': 'Clustered Gene'
    })

    # Add a new column for marking the special groups
    df_for_plot['SpecialGroup'] = 'None'
    df_for_plot.loc[df_for_plot['Gene'].isin(training_genes.index), 'SpecialGroup'] = 'Most Likely Training Gene'
    if gene_list:
        df_for_plot.loc[df_for_plot['Gene'].isin(gene_list), 'SpecialGroup'] = 'User Input Gene'

    # Initialize an empty figure
    fig = go.Figure()
    
    # Define color mapping for clusters
    cluster_colors = ['#ADD8E6', '#87CEEB', '#1E90FF'] 
    
    # Plot clustered genes based on PCA components
    for i, cluster in enumerate(df_for_plot['Cluster'].unique()):
        filtered_df = df_for_plot[(df_for_plot['Cluster'] == cluster) & (df_for_plot['SpecialGroup'] == 'None')]
        fig.add_trace(go.Scatter(
            x=filtered_df['PCA_1'], y=filtered_df['PCA_2'],
            mode='markers',
            name=f'Cluster {cluster}',
            text=filtered_df['Gene'],
            marker=dict(color=cluster_colors[i]),
            hoverinfo="text+x+y",
        ))
    
    # Overlay "Most Likely Training Gene"
    filtered_df = df_for_plot[df_for_plot['SpecialGroup'] == 'Most Likely Training Gene']
    fig.add_trace(go.Scatter(
        x=filtered_df['PCA_1'], y=filtered_df['PCA_2'],
        mode='markers',
        name='Most Likely Training Gene',
        text=filtered_df['Gene'],
        marker=dict(color='black'),
        hoverinfo="text+x+y",
    ))
    
    # Overlay "User Input Gene"
    filtered_df = df_for_plot[df_for_plot['SpecialGroup'] == 'User Input Gene']
    fig.add_trace(go.Scatter(
        x=filtered_df['PCA_1'], y=filtered_df['PCA_2'],
        mode='markers',
        name='User Input Gene',
        text=filtered_df['Gene'],
        marker=dict(color='purple'),
        hoverinfo="text+x+y",
    ))
    
    # Customize layout
    fig.update_layout(
        title='Supervised SHAP Clustering with PCA',
        xaxis_title='First Principal Component',
        yaxis_title='Second Principal Component',
        showlegend=True,
        legend_title_text='Gene Category',
    )
    
    st.plotly_chart(fig, use_container_width=True)