from typing import Optional, Tuple from einops import rearrange import torch import torch.nn.functional as F import timm from PIL import Image from torch import nn import numpy as np import os import time import gradio as gr MODEL_DICT = {} def transform_image(image, resolution=(1024, 1024), use_cuda=False): image = image.convert('RGB').resize(resolution, Image.Resampling.NEAREST) # Convert to torch tensor image = torch.tensor(np.array(image).transpose(2, 0, 1)).float() if use_cuda: image = image.cuda() image = image / 255 # Normalize image = (image - 0.5) / 0.5 return image class MobileSAM(nn.Module): def __init__(self, **kwargs): super().__init__(**kwargs) from mobile_sam import sam_model_registry url = "https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt" model_type = "vit_t" sam_checkpoint = "mobile_sam.pt" if not os.path.exists(sam_checkpoint): import requests r = requests.get(url) with open(sam_checkpoint, "wb") as f: f.write(r.content) mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) def new_forward_fn(self, x): shortcut = x x = self.conv1(x) x = self.act1(x) x = self.conv2(x) x = self.act2(x) self.attn_output = rearrange(x.clone(), "b c h w -> b h w c") x = self.conv3(x) self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c") x = self.drop_path(x) x += shortcut x = self.act3(x) self.block_output = rearrange(x.clone(), "b c h w -> b h w c") return x setattr( mobile_sam.image_encoder.layers[0].blocks[0].__class__, "forward", new_forward_fn, ) def new_forward_fn2(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" res_x = x if H == self.window_size and W == self.window_size: x = self.attn(x) else: x = x.view(B, H, W, C) pad_b = (self.window_size - H % self.window_size) % self.window_size pad_r = (self.window_size - W % self.window_size) % self.window_size padding = pad_b > 0 or pad_r > 0 if padding: x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) pH, pW = H + pad_b, W + pad_r nH = pH // self.window_size nW = pW // self.window_size # window partition x = ( x.view(B, nH, self.window_size, nW, self.window_size, C) .transpose(2, 3) .reshape(B * nH * nW, self.window_size * self.window_size, C) ) x = self.attn(x) # window reverse x = ( x.view(B, nH, nW, self.window_size, self.window_size, C) .transpose(2, 3) .reshape(B, pH, pW, C) ) if padding: x = x[:, :H, :W].contiguous() x = x.view(B, L, C) hw = np.sqrt(x.shape[1]).astype(int) self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw) x = res_x + self.drop_path(x) x = x.transpose(1, 2).reshape(B, C, H, W) x = self.local_conv(x) x = x.view(B, C, L).transpose(1, 2) mlp_output = self.mlp(x) self.mlp_output = rearrange( mlp_output.clone(), "b (h w) c -> b h w c", h=hw ) x = x + self.drop_path(mlp_output) self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw) return x setattr( mobile_sam.image_encoder.layers[1].blocks[0].__class__, "forward", new_forward_fn2, ) mobile_sam.eval() self.image_encoder = mobile_sam.image_encoder @torch.no_grad() def forward(self, x): with torch.no_grad(): x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear") out = self.image_encoder(x) attn_outputs, mlp_outputs, block_outputs = [], [], [] for i_layer in range(len(self.image_encoder.layers)): for i_block in range(len(self.image_encoder.layers[i_layer].blocks)): blk = self.image_encoder.layers[i_layer].blocks[i_block] attn_outputs.append(blk.attn_output) mlp_outputs.append(blk.mlp_output) block_outputs.append(blk.block_output) return attn_outputs, mlp_outputs, block_outputs MODEL_DICT["MobileSAM"] = MobileSAM() class SAM(torch.nn.Module): def __init__(self, **kwargs): super().__init__(**kwargs) from segment_anything import sam_model_registry, SamPredictor from segment_anything.modeling.sam import Sam checkpoint = "sam_vit_b_01ec64.pth" if not os.path.exists(checkpoint): checkpoint_url = ( "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" ) import requests r = requests.get(checkpoint_url) with open(checkpoint, "wb") as f: f.write(r.content) sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint) from segment_anything.modeling.image_encoder import ( window_partition, window_unpartition, ) def new_block_forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x x = self.norm1(x) # Window partition if self.window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, self.window_size) x = self.attn(x) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, self.window_size, pad_hw, (H, W)) self.attn_output = x.clone() x = shortcut + x mlp_outout = self.mlp(self.norm2(x)) self.mlp_output = mlp_outout.clone() x = x + mlp_outout self.block_output = x.clone() return x setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward) self.image_encoder = sam.image_encoder self.image_encoder.eval() @torch.no_grad() def forward(self, x: torch.Tensor) -> torch.Tensor: with torch.no_grad(): x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear") out = self.image_encoder(x) attn_outputs, mlp_outputs, block_outputs = [], [], [] for i, blk in enumerate(self.image_encoder.blocks): attn_outputs.append(blk.attn_output) mlp_outputs.append(blk.mlp_output) block_outputs.append(blk.block_output) attn_outputs = torch.stack(attn_outputs) mlp_outputs = torch.stack(mlp_outputs) block_outputs = torch.stack(block_outputs) return attn_outputs, mlp_outputs, block_outputs MODEL_DICT["SAM(sam_vit_b)"] = SAM() class DiNOv2(torch.nn.Module): def __init__(self, ver="dinov2_vitb14_reg"): super().__init__() self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver) self.dinov2.requires_grad_(False) self.dinov2.eval() def new_block_forward(self, x: torch.Tensor) -> torch.Tensor: def attn_residual_func(x): return self.ls1(self.attn(self.norm1(x))) def ffn_residual_func(x): return self.ls2(self.mlp(self.norm2(x))) attn_output = attn_residual_func(x) hw = np.sqrt(attn_output.shape[1] - 5).astype(int) self.attn_output = rearrange( attn_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw ) x = x + attn_output mlp_output = ffn_residual_func(x) self.mlp_output = rearrange( mlp_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw ) x = x + mlp_output block_output = x self.block_output = rearrange( block_output.clone()[:, 5:], "b (h w) c -> b h w c", h=hw ) return x setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward) @torch.no_grad() def forward(self, x): out = self.dinov2(x) attn_outputs, mlp_outputs, block_outputs = [], [], [] for i, blk in enumerate(self.dinov2.blocks): attn_outputs.append(blk.attn_output) mlp_outputs.append(blk.mlp_output) block_outputs.append(blk.block_output) attn_outputs = torch.stack(attn_outputs) mlp_outputs = torch.stack(mlp_outputs) block_outputs = torch.stack(block_outputs) return attn_outputs, mlp_outputs, block_outputs MODEL_DICT["DiNO(dinov2_vitb14_reg)"] = DiNOv2() class CLIP(torch.nn.Module): def __init__(self): super().__init__() from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16") # resample the patch embeddings to 64x64, take 1024x1024 input embeddings = model.vision_model.embeddings.position_embedding.weight cls_embeddings = embeddings[0] patch_embeddings = embeddings[1:] # [14*14, 768] patch_embeddings = rearrange(patch_embeddings, "(h w) c -> c h w", h=14) patch_embeddings = F.interpolate(patch_embeddings.unsqueeze(0), size=(64, 64), mode="bilinear", align_corners=False).squeeze(0) patch_embeddings = rearrange(patch_embeddings, "c h w -> (h w) c") embeddings = torch.cat([cls_embeddings.unsqueeze(0), patch_embeddings], dim=0) model.vision_model.embeddings.position_embedding.weight = nn.Parameter(embeddings) model.vision_model.embeddings.position_ids = torch.arange(0, 1+64*64) # processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") self.model = model.eval() def new_forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hw = np.sqrt(hidden_states.shape[1] - 1).astype(int) self.attn_output = rearrange( hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) self.mlp_output = rearrange( hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw ) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) self.block_output = rearrange( hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw ) return outputs setattr( self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward ) @torch.no_grad() def forward(self, x): out = self.model.vision_model(x) attn_outputs, mlp_outputs, block_outputs = [], [], [] for i, blk in enumerate(self.model.vision_model.encoder.layers): attn_outputs.append(blk.attn_output) mlp_outputs.append(blk.mlp_output) block_outputs.append(blk.block_output) attn_outputs = torch.stack(attn_outputs) mlp_outputs = torch.stack(mlp_outputs) block_outputs = torch.stack(block_outputs) return attn_outputs, mlp_outputs, block_outputs MODEL_DICT["CLIP(openai/clip-vit-base-patch16)"] = CLIP() class MAE(timm.models.vision_transformer.VisionTransformer): def __init__(self, **kwargs): super(MAE, self).__init__(**kwargs) sd = torch.hub.load_state_dict_from_url( "https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth" ) checkpoint_model = sd["model"] state_dict = self.state_dict() for k in ["head.weight", "head.bias"]: if ( k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape ): print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] # load pre-trained model msg = self.load_state_dict(checkpoint_model, strict=False) print(msg) # resample the patch embeddings to 64x64, take 1024x1024 input pos_embed = self.pos_embed[0] cls_embeddings = pos_embed[0] patch_embeddings = pos_embed[1:] # [14*14, 768] patch_embeddings = rearrange(patch_embeddings, "(h w) c -> c h w", h=14) patch_embeddings = F.interpolate(patch_embeddings.unsqueeze(0), size=(64, 64), mode="bilinear", align_corners=False).squeeze(0) patch_embeddings = rearrange(patch_embeddings, "c h w -> (h w) c") pos_embed = torch.cat([cls_embeddings.unsqueeze(0), patch_embeddings], dim=0) self.pos_embed = nn.Parameter(pos_embed.unsqueeze(0)) self.img_size = (1024, 1024) self.patch_embed.img_size = (1024, 1024) self.requires_grad_(False) self.eval() def forward(self, x): self.saved_attn_node = self.ls1(self.attn(self.norm1(x))) x = x + self.saved_attn_node.clone() self.saved_mlp_node = self.ls2(self.mlp(self.norm2(x))) x = x + self.saved_mlp_node.clone() self.saved_block_output = x.clone() return x setattr(self.blocks[0].__class__, "forward", forward) def forward(self, x): out = super().forward(x) def remove_cls_and_reshape(x): x = x.clone() x = x[:, 1:] hw = np.sqrt(x.shape[1]).astype(int) x = rearrange(x, "b (h w) c -> b h w c", h=hw) return x attn_nodes = [remove_cls_and_reshape(block.saved_attn_node) for block in self.blocks] mlp_nodes = [remove_cls_and_reshape(block.saved_mlp_node) for block in self.blocks] block_outputs = [remove_cls_and_reshape(block.saved_block_output) for block in self.blocks] return attn_nodes, mlp_nodes, block_outputs MODEL_DICT["MAE(vit_base)"] = MAE() def extract_features(images, model_name, node_type, layer): use_cuda = torch.cuda.is_available() resolution = (1024, 1024) resolution_dict = { "DiNO(dinov2_vitb14_reg)": (896, 896), } if model_name in resolution_dict: resolution = resolution_dict[model_name] model = MODEL_DICT[model_name] if use_cuda: model = model.cuda() outputs = [] for i in range(len(images)): image = transform_image(images[i], resolution=resolution, use_cuda=use_cuda) inp = image.unsqueeze(0) attn_output, mlp_output, block_output = model(inp) out_dict = { "attn": attn_output, "mlp": mlp_output, "block": block_output, } out = out_dict[node_type] out = out[layer] outputs.append(out) outputs = torch.cat(outputs, dim=0) return outputs if __name__ == '__main__': inp = torch.rand(1, 3, 1024, 1024) model = MAE() out = model(inp) print(out[0][0].shape, out[0][1].shape, out[0][2].shape)