innnky's picture
init
471bf00
raw
history blame
No virus
19.2 kB
from librosa.util import pad_center, tiny
from scipy.signal import get_window
from torch import Tensor
from torch.autograd import Variable
from typing import Optional, Tuple
import librosa
import librosa.util as librosa_util
import math
import numpy as np
import scipy
import torch
import torch.nn.functional as F
import warnings
def create_fb_matrix(
n_freqs: int,
f_min: float,
f_max: float,
n_mels: int,
sample_rate: int,
norm: Optional[str] = None
) -> Tensor:
r"""Create a frequency bin conversion matrix.
Args:
n_freqs (int): Number of frequencies to highlight/apply
f_min (float): Minimum frequency (Hz)
f_max (float): Maximum frequency (Hz)
n_mels (int): Number of mel filterbanks
sample_rate (int): Sample rate of the audio waveform
norm (Optional[str]): If 'slaney', divide the triangular mel weights by the width of the mel band
(area normalization). (Default: ``None``)
Returns:
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
meaning number of frequencies to highlight/apply to x the number of filterbanks.
Each column is a filterbank so that assuming there is a matrix A of
size (..., ``n_freqs``), the applied result would be
``A * create_fb_matrix(A.size(-1), ...)``.
"""
if norm is not None and norm != "slaney":
raise ValueError("norm must be one of None or 'slaney'")
# freq bins
# Equivalent filterbank construction by Librosa
all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)
# calculate mel freq bins
# hertz to mel(f) is 2595. * math.log10(1. + (f / 700.))
m_min = 2595.0 * math.log10(1.0 + (f_min / 700.0))
m_max = 2595.0 * math.log10(1.0 + (f_max / 700.0))
m_pts = torch.linspace(m_min, m_max, n_mels + 2)
# mel to hertz(mel) is 700. * (10**(mel / 2595.) - 1.)
f_pts = 700.0 * (10 ** (m_pts / 2595.0) - 1.0)
# calculate the difference between each mel point and each stft freq point in hertz
f_diff = f_pts[1:] - f_pts[:-1] # (n_mels + 1)
slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_mels + 2)
# create overlapping triangles
down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_mels)
up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_mels)
fb = torch.min(down_slopes, up_slopes)
fb = torch.clamp(fb, 1e-6, 1)
if norm is not None and norm == "slaney":
# Slaney-style mel is scaled to be approx constant energy per channel
enorm = 2.0 / (f_pts[2:n_mels + 2] - f_pts[:n_mels])
fb *= enorm.unsqueeze(0)
return fb
def lfilter(
waveform: Tensor,
a_coeffs: Tensor,
b_coeffs: Tensor,
clamp: bool = True,
) -> Tensor:
r"""Perform an IIR filter by evaluating difference equation.
Args:
waveform (Tensor): audio waveform of dimension of ``(..., time)``. Must be normalized to -1 to 1.
a_coeffs (Tensor): denominator coefficients of difference equation of dimension of ``(n_order + 1)``.
Lower delays coefficients are first, e.g. ``[a0, a1, a2, ...]``.
Must be same size as b_coeffs (pad with 0's as necessary).
b_coeffs (Tensor): numerator coefficients of difference equation of dimension of ``(n_order + 1)``.
Lower delays coefficients are first, e.g. ``[b0, b1, b2, ...]``.
Must be same size as a_coeffs (pad with 0's as necessary).
clamp (bool, optional): If ``True``, clamp the output signal to be in the range [-1, 1] (Default: ``True``)
Returns:
Tensor: Waveform with dimension of ``(..., time)``.
"""
# pack batch
shape = waveform.size()
waveform = waveform.reshape(-1, shape[-1])
assert (a_coeffs.size(0) == b_coeffs.size(0))
assert (len(waveform.size()) == 2)
assert (waveform.device == a_coeffs.device)
assert (b_coeffs.device == a_coeffs.device)
device = waveform.device
dtype = waveform.dtype
n_channel, n_sample = waveform.size()
n_order = a_coeffs.size(0)
n_sample_padded = n_sample + n_order - 1
assert (n_order > 0)
# Pad the input and create output
padded_waveform = torch.zeros(n_channel, n_sample_padded, dtype=dtype, device=device)
padded_waveform[:, (n_order - 1):] = waveform
padded_output_waveform = torch.zeros(n_channel, n_sample_padded, dtype=dtype, device=device)
# Set up the coefficients matrix
# Flip coefficients' order
a_coeffs_flipped = a_coeffs.flip(0)
b_coeffs_flipped = b_coeffs.flip(0)
# calculate windowed_input_signal in parallel
# create indices of original with shape (n_channel, n_order, n_sample)
window_idxs = torch.arange(n_sample, device=device).unsqueeze(0) + torch.arange(n_order, device=device).unsqueeze(1)
window_idxs = window_idxs.repeat(n_channel, 1, 1)
window_idxs += (torch.arange(n_channel, device=device).unsqueeze(-1).unsqueeze(-1) * n_sample_padded)
window_idxs = window_idxs.long()
# (n_order, ) matmul (n_channel, n_order, n_sample) -> (n_channel, n_sample)
input_signal_windows = torch.matmul(b_coeffs_flipped, torch.take(padded_waveform, window_idxs))
input_signal_windows.div_(a_coeffs[0])
a_coeffs_flipped.div_(a_coeffs[0])
for i_sample, o0 in enumerate(input_signal_windows.t()):
windowed_output_signal = padded_output_waveform[:, i_sample:(i_sample + n_order)]
o0.addmv_(windowed_output_signal, a_coeffs_flipped, alpha=-1)
padded_output_waveform[:, i_sample + n_order - 1] = o0
output = padded_output_waveform[:, (n_order - 1):]
if clamp:
output = torch.clamp(output, min=-1., max=1.)
# unpack batch
output = output.reshape(shape[:-1] + output.shape[-1:])
return output
def biquad(
waveform: Tensor,
b0: float,
b1: float,
b2: float,
a0: float,
a1: float,
a2: float
) -> Tensor:
r"""Perform a biquad filter of input tensor. Initial conditions set to 0.
https://en.wikipedia.org/wiki/Digital_biquad_filter
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
b0 (float): numerator coefficient of current input, x[n]
b1 (float): numerator coefficient of input one time step ago x[n-1]
b2 (float): numerator coefficient of input two time steps ago x[n-2]
a0 (float): denominator coefficient of current output y[n], typically 1
a1 (float): denominator coefficient of current output y[n-1]
a2 (float): denominator coefficient of current output y[n-2]
Returns:
Tensor: Waveform with dimension of `(..., time)`
"""
device = waveform.device
dtype = waveform.dtype
output_waveform = lfilter(
waveform,
torch.tensor([a0, a1, a2], dtype=dtype, device=device),
torch.tensor([b0, b1, b2], dtype=dtype, device=device)
)
return output_waveform
def _dB2Linear(x: float) -> float:
return math.exp(x * math.log(10) / 20.0)
def highpass_biquad(
waveform: Tensor,
sample_rate: int,
cutoff_freq: float,
Q: float = 0.707
) -> Tensor:
r"""Design biquad highpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform dimension of `(..., time)`
"""
w0 = 2 * math.pi * cutoff_freq / sample_rate
alpha = math.sin(w0) / 2. / Q
b0 = (1 + math.cos(w0)) / 2
b1 = -1 - math.cos(w0)
b2 = b0
a0 = 1 + alpha
a1 = -2 * math.cos(w0)
a2 = 1 - alpha
return biquad(waveform, b0, b1, b2, a0, a1, a2)
def lowpass_biquad(
waveform: Tensor,
sample_rate: int,
cutoff_freq: float,
Q: float = 0.707
) -> Tensor:
r"""Design biquad lowpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
"""
w0 = 2 * math.pi * cutoff_freq / sample_rate
alpha = math.sin(w0) / 2 / Q
b0 = (1 - math.cos(w0)) / 2
b1 = 1 - math.cos(w0)
b2 = b0
a0 = 1 + alpha
a1 = -2 * math.cos(w0)
a2 = 1 - alpha
return biquad(waveform, b0, b1, b2, a0, a1, a2)
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
n_fft=800, dtype=np.float32, norm=None):
"""
# from librosa 0.6
Compute the sum-square envelope of a window function at a given hop length.
This is used to estimate modulation effects induced by windowing
observations in short-time fourier transforms.
Parameters
----------
window : string, tuple, number, callable, or list-like
Window specification, as in `get_window`
n_frames : int > 0
The number of analysis frames
hop_length : int > 0
The number of samples to advance between frames
win_length : [optional]
The length of the window function. By default, this matches `n_fft`.
n_fft : int > 0
The length of each analysis frame.
dtype : np.dtype
The data type of the output
Returns
-------
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
The sum-squared envelope of the window function
"""
if win_length is None:
win_length = n_fft
n = n_fft + hop_length * (n_frames - 1)
x = np.zeros(n, dtype=dtype)
# Compute the squared window at the desired length
win_sq = get_window(window, win_length, fftbins=True)
win_sq = librosa_util.normalize(win_sq, norm=norm)**2
win_sq = librosa_util.pad_center(win_sq, n_fft)
# Fill the envelope
for i in range(n_frames):
sample = i * hop_length
x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
return x
class MelScale(torch.nn.Module):
r"""Turn a normal STFT into a mel frequency STFT, using a conversion
matrix. This uses triangular filter banks.
User can control which device the filter bank (`fb`) is (e.g. fb.to(spec_f.device)).
Args:
n_mels (int, optional): Number of mel filterbanks. (Default: ``128``)
sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``)
f_min (float, optional): Minimum frequency. (Default: ``0.``)
f_max (float or None, optional): Maximum frequency. (Default: ``sample_rate // 2``)
n_stft (int, optional): Number of bins in STFT. Calculated from first input
if None is given. See ``n_fft`` in :class:`Spectrogram`. (Default: ``None``)
"""
__constants__ = ['n_mels', 'sample_rate', 'f_min', 'f_max']
def __init__(self,
n_mels: int = 128,
sample_rate: int = 24000,
f_min: float = 0.,
f_max: Optional[float] = None,
n_stft: Optional[int] = None) -> None:
super(MelScale, self).__init__()
self.n_mels = n_mels
self.sample_rate = sample_rate
self.f_max = f_max if f_max is not None else float(sample_rate // 2)
self.f_min = f_min
assert f_min <= self.f_max, 'Require f_min: %f < f_max: %f' % (f_min, self.f_max)
fb = torch.empty(0) if n_stft is None else create_fb_matrix(
n_stft, self.f_min, self.f_max, self.n_mels, self.sample_rate)
self.register_buffer('fb', fb)
def forward(self, specgram: Tensor) -> Tensor:
r"""
Args:
specgram (Tensor): A spectrogram STFT of dimension (..., freq, time).
Returns:
Tensor: Mel frequency spectrogram of size (..., ``n_mels``, time).
"""
# pack batch
shape = specgram.size()
specgram = specgram.reshape(-1, shape[-2], shape[-1])
if self.fb.numel() == 0:
tmp_fb = create_fb_matrix(specgram.size(1), self.f_min, self.f_max, self.n_mels, self.sample_rate)
# Attributes cannot be reassigned outside __init__ so workaround
self.fb.resize_(tmp_fb.size())
self.fb.copy_(tmp_fb)
# (channel, frequency, time).transpose(...) dot (frequency, n_mels)
# -> (channel, time, n_mels).transpose(...)
mel_specgram = torch.matmul(specgram.transpose(1, 2), self.fb).transpose(1, 2)
# unpack batch
mel_specgram = mel_specgram.reshape(shape[:-2] + mel_specgram.shape[-2:])
return mel_specgram
class TorchSTFT(torch.nn.Module):
def __init__(self, fft_size, hop_size, win_size,
normalized=False, domain='linear',
mel_scale=False, ref_level_db=20, min_level_db=-100):
super().__init__()
self.fft_size = fft_size
self.hop_size = hop_size
self.win_size = win_size
self.ref_level_db = ref_level_db
self.min_level_db = min_level_db
self.window = torch.hann_window(win_size)
self.normalized = normalized
self.domain = domain
self.mel_scale = MelScale(n_mels=(fft_size // 2 + 1),
n_stft=(fft_size // 2 + 1)) if mel_scale else None
def transform(self, x):
x_stft = torch.stft(x, self.fft_size, self.hop_size, self.win_size,
self.window.type_as(x), normalized=self.normalized)
real = x_stft[..., 0]
imag = x_stft[..., 1]
mag = torch.clamp(real ** 2 + imag ** 2, min=1e-7)
mag = torch.sqrt(mag)
phase = torch.atan2(imag, real)
if self.mel_scale is not None:
mag = self.mel_scale(mag)
if self.domain == 'log':
mag = 20 * torch.log10(mag) - self.ref_level_db
mag = torch.clamp((mag - self.min_level_db) / -self.min_level_db, 0, 1)
return mag, phase
elif self.domain == 'linear':
return mag, phase
elif self.domain == 'double':
log_mag = 20 * torch.log10(mag) - self.ref_level_db
log_mag = torch.clamp((log_mag - self.min_level_db) / -self.min_level_db, 0, 1)
return torch.cat((mag, log_mag), dim=1), phase
def complex(self, x):
x_stft = torch.stft(x, self.fft_size, self.hop_size, self.win_size,
self.window.type_as(x), normalized=self.normalized)
real = x_stft[..., 0]
imag = x_stft[..., 1]
return real, imag
class STFT(torch.nn.Module):
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
def __init__(self, filter_length=800, hop_length=200, win_length=800,
window='hann'):
super(STFT, self).__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = window
self.forward_transform = None
scale = self.filter_length / self.hop_length
fourier_basis = np.fft.fft(np.eye(self.filter_length))
cutoff = int((self.filter_length / 2 + 1))
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
np.imag(fourier_basis[:cutoff, :])])
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
inverse_basis = torch.FloatTensor(
np.linalg.pinv(scale * fourier_basis).T[:, None, :])
if window is not None:
assert(filter_length >= win_length)
# get window and zero center pad it to filter_length
fft_window = get_window(window, win_length, fftbins=True)
fft_window = pad_center(fft_window, filter_length)
fft_window = torch.from_numpy(fft_window).float()
# window the bases
forward_basis *= fft_window
inverse_basis *= fft_window
self.register_buffer('forward_basis', forward_basis.float())
self.register_buffer('inverse_basis', inverse_basis.float())
def transform(self, input_data):
num_batches = input_data.size(0)
num_samples = input_data.size(1)
self.num_samples = num_samples
# similar to librosa, reflect-pad the input
input_data = input_data.view(num_batches, 1, num_samples)
input_data = F.pad(
input_data.unsqueeze(1),
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
mode='reflect')
input_data = input_data.squeeze(1)
forward_transform = F.conv1d(
input_data,
Variable(self.forward_basis, requires_grad=False),
stride=self.hop_length,
padding=0)
cutoff = int((self.filter_length / 2) + 1)
real_part = forward_transform[:, :cutoff, :]
imag_part = forward_transform[:, cutoff:, :]
magnitude = torch.sqrt(real_part**2 + imag_part**2)
phase = torch.autograd.Variable(
torch.atan2(imag_part.data, real_part.data))
return magnitude, phase
def inverse(self, magnitude, phase):
recombine_magnitude_phase = torch.cat(
[magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
inverse_transform = F.conv_transpose1d(
recombine_magnitude_phase,
Variable(self.inverse_basis, requires_grad=False),
stride=self.hop_length,
padding=0)
if self.window is not None:
window_sum = window_sumsquare(
self.window, magnitude.size(-1), hop_length=self.hop_length,
win_length=self.win_length, n_fft=self.filter_length,
dtype=np.float32)
# remove modulation effects
approx_nonzero_indices = torch.from_numpy(
np.where(window_sum > tiny(window_sum))[0])
window_sum = torch.autograd.Variable(
torch.from_numpy(window_sum), requires_grad=False)
window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
# scale by hop ratio
inverse_transform *= float(self.filter_length) / self.hop_length
inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
return inverse_transform
def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction