# import gradio as gr # import torch # import spaces # from diffusers import FluxPipeline, DiffusionPipeline # from torchao.quantization import autoquant # # # # normal FluxPipeline # # pipeline_normal = FluxPipeline.from_pretrained( # # "sayakpaul/FLUX.1-merged", # # torch_dtype=torch.bfloat16 # # ).to("cuda") # # pipeline_normal.transformer.to(memory_format=torch.channels_last) # # pipeline_normal.transformer = torch.compile(pipeline_normal.transformer, mode="max-autotune", fullgraph=True) # pipeline_normal = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged") # pipeline_normal.enable_model_cpu_offload() # pipeline_normal.load_lora_weights("DarkMoonDragon/TurboRender-flux-dev") # # # optimized FluxPipeline # # pipeline_optimized = FluxPipeline.from_pretrained( # # "camenduru/FLUX.1-dev-diffusers", # # torch_dtype=torch.bfloat16 # # ).to("cuda") # # pipeline_optimized.transformer.to(memory_format=torch.channels_last) # # pipeline_optimized.transformer = torch.compile( # # pipeline_optimized.transformer, # # mode="max-autotune", # # fullgraph=True # # ) # # # wrap the autoquant call in a try-except block to handle unsupported layers # # for name, layer in pipeline_optimized.transformer.named_children(): # # try: # # # apply autoquant to each layer # # pipeline_optimized.transformer._modules[name] = autoquant(layer, error_on_unseen=False) # # print(f"Successfully quantized {name}") # # except AttributeError as e: # # print(f"Skipping layer {name} due to error: {e}") # # except Exception as e: # # print(f"Unexpected error while quantizing {name}: {e}") # # pipeline_optimized.transformer = autoquant( # # pipeline_optimized.transformer, # # error_on_unseen=False # # ) # pipeline_optimized = pipeline_normal # @spaces.GPU(duration=120) # def generate_images(prompt, guidance_scale, num_inference_steps): # # # generate image with normal pipeline # # image_normal = pipeline_normal( # # prompt=prompt, # # guidance_scale=guidance_scale, # # num_inference_steps=int(num_inference_steps) # # ).images[0] # # generate image with optimized pipeline # image_optimized = pipeline_optimized( # prompt=prompt, # guidance_scale=guidance_scale, # num_inference_steps=int(num_inference_steps) # ).images[0] # return image_optimized # # set up Gradio interface # demo = gr.Interface( # fn=generate_images, # inputs=[ # gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"), # gr.Slider(1.0, 10.0, step=0.5, value=3.5, label="Guidance Scale"), # gr.Slider(10, 100, step=1, value=50, label="Number of Inference Steps") # ], # outputs=[ # gr.Image(type="pil", label="Optimized FluxPipeline") # ], # title="FluxPipeline Comparison", # description="Compare images generated by the normal FluxPipeline and the optimized one using torchao and torch.compile()." # ) # demo.launch() import gradio as gr import torch from diffusers import FluxPipeline from torchao import swap_conv2d_1x1_to_linear, apply_dynamic_quant # Step 1: Enable PyTorch 2-specific optimizations torch._inductor.config.conv_1x1_as_mm = True torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.epilogue_fusion = False torch._inductor.config.coordinate_descent_check_all_directions = True torch._inductor.config.force_fuse_int_mm_with_mul = True torch._inductor.config.use_mixed_mm = True # Step 2: Load the Flux pipeline with bfloat16 precision pipe = FluxPipeline.from_pretrained( "sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16 ).to("cuda") # Step 3: Apply attention optimizations pipe.fuse_qkv_projections() # Step 4: Change memory layout for performance boost pipe.unet.to(memory_format=torch.channels_last) pipe.vae.to(memory_format=torch.channels_last) # Step 5: Swap Conv2D 1x1 layers to Linear and apply dynamic quantization def dynamic_quant_filter_fn(mod, *args): return isinstance(mod, torch.nn.Linear) and mod.in_features > 16 def conv_filter_fn(mod, *args): return isinstance(mod, torch.nn.Conv2d) and mod.kernel_size == (1, 1) swap_conv2d_1x1_to_linear(pipe.unet, conv_filter_fn) swap_conv2d_1x1_to_linear(pipe.vae, conv_filter_fn) apply_dynamic_quant(pipe.unet, dynamic_quant_filter_fn) apply_dynamic_quant(pipe.vae, dynamic_quant_filter_fn) # Step 6: Compile the UNet and VAE for optimized kernels pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True) pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) # Image generation function def generate_image(prompt, guidance_scale, num_inference_steps): # Generate the image using the optimized pipeline image = pipe(prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] return image # Gradio UI with gr.Blocks() as demo: gr.Markdown("# Optimized Flux Model Inference") with gr.Row(): prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here") guidance_scale = gr.Slider(0.0, 15.0, value=7.5, step=0.1, label="Guidance Scale") steps = gr.Slider(5, 50, value=30, step=1, label="Inference Steps") image_output = gr.Image(type="pil", label="Generated Image") generate_button = gr.Button("Generate Image") generate_button.click(generate_image, inputs=[prompt, guidance_scale, steps], outputs=image_output) demo.launch()