kadirnar's picture
Upload 98 files
e7d5680 verified
raw
history blame
No virus
21.3 kB
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha
# Latte: https://github.com/Vchitect/Latte
# DiT: https://github.com/facebookresearch/DiT/tree/main
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import math
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
import xformers.ops
from einops import rearrange
from timm.models.vision_transformer import Mlp
from opensora.acceleration.communications import all_to_all, split_forward_gather_backward
from opensora.acceleration.parallel_states import get_sequence_parallel_group
approx_gelu = lambda: nn.GELU(approximate="tanh")
def get_layernorm(hidden_size: torch.Tensor, eps: float, affine: bool, use_kernel: bool):
if use_kernel:
try:
from apex.normalization import FusedLayerNorm
return FusedLayerNorm(hidden_size, elementwise_affine=affine, eps=eps)
except ImportError:
raise RuntimeError("FusedLayerNorm not available. Please install apex.")
else:
return nn.LayerNorm(hidden_size, eps, elementwise_affine=affine)
def modulate(norm_func, x, shift, scale):
# Suppose x is (B, N, D), shift is (B, D), scale is (B, D)
dtype = x.dtype
x = norm_func(x.to(torch.float32)).to(dtype)
x = x * (scale.unsqueeze(1) + 1) + shift.unsqueeze(1)
x = x.to(dtype)
return x
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
# ===============================================
# General-purpose Layers
# ===============================================
class PatchEmbed3D(nn.Module):
"""Video to Patch Embedding.
Args:
patch_size (int): Patch token size. Default: (2,4,4).
in_chans (int): Number of input video channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(
self,
patch_size=(2, 4, 4),
in_chans=3,
embed_dim=96,
norm_layer=None,
flatten=True,
):
super().__init__()
self.patch_size = patch_size
self.flatten = flatten
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, D, H, W = x.size()
if W % self.patch_size[2] != 0:
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
if H % self.patch_size[1] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
if D % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
x = self.proj(x) # (B C T H W)
if self.norm is not None:
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC
return x
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
norm_layer: nn.Module = nn.LayerNorm,
enable_flashattn: bool = False,
) -> None:
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim**-0.5
self.enable_flashattn = enable_flashattn
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
qkv = self.qkv(x)
qkv_shape = (B, N, 3, self.num_heads, self.head_dim)
if self.enable_flashattn:
qkv_permute_shape = (2, 0, 1, 3, 4)
else:
qkv_permute_shape = (2, 0, 3, 1, 4)
qkv = qkv.view(qkv_shape).permute(qkv_permute_shape)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if self.enable_flashattn:
from flash_attn import flash_attn_func
x = flash_attn_func(
q,
k,
v,
dropout_p=self.attn_drop.p if self.training else 0.0,
softmax_scale=self.scale,
)
else:
dtype = q.dtype
q = q * self.scale
attn = q @ k.transpose(-2, -1) # translate attn to float32
attn = attn.to(torch.float32)
attn = attn.softmax(dim=-1)
attn = attn.to(dtype) # cast back attn to original dtype
attn = self.attn_drop(attn)
x = attn @ v
x_output_shape = (B, N, C)
if not self.enable_flashattn:
x = x.transpose(1, 2)
x = x.reshape(x_output_shape)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SeqParallelAttention(Attention):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
norm_layer: nn.Module = nn.LayerNorm,
enable_flashattn: bool = False,
) -> None:
super().__init__(
dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
attn_drop=attn_drop,
proj_drop=proj_drop,
norm_layer=norm_layer,
enable_flashattn=enable_flashattn,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape # for sequence parallel here, the N is a local sequence length
qkv = self.qkv(x)
qkv_shape = (B, N, 3, self.num_heads, self.head_dim)
qkv = qkv.view(qkv_shape)
sp_group = get_sequence_parallel_group()
# apply all_to_all to gather sequence and split attention heads
# [B, SUB_N, 3, NUM_HEAD, HEAD_DIM] -> [B, N, 3, NUM_HEAD_PER_DEVICE, HEAD_DIM]
qkv = all_to_all(qkv, sp_group, scatter_dim=3, gather_dim=1)
if self.enable_flashattn:
qkv_permute_shape = (2, 0, 1, 3, 4) # [3, B, N, NUM_HEAD_PER_DEVICE, HEAD_DIM]
else:
qkv_permute_shape = (2, 0, 3, 1, 4) # [3, B, NUM_HEAD_PER_DEVICE, N, HEAD_DIM]
qkv = qkv.permute(qkv_permute_shape)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if self.enable_flashattn:
from flash_attn import flash_attn_func
x = flash_attn_func(
q,
k,
v,
dropout_p=self.attn_drop.p if self.training else 0.0,
softmax_scale=self.scale,
)
else:
dtype = q.dtype
q = q * self.scale
attn = q @ k.transpose(-2, -1) # translate attn to float32
attn = attn.to(torch.float32)
attn = attn.softmax(dim=-1)
attn = attn.to(dtype) # cast back attn to original dtype
attn = self.attn_drop(attn)
x = attn @ v
if not self.enable_flashattn:
x = x.transpose(1, 2)
# apply all to all to gather back attention heads and split sequence
# [B, N, NUM_HEAD_PER_DEVICE, HEAD_DIM] -> [B, SUB_N, NUM_HEAD, HEAD_DIM]
x = all_to_all(x, sp_group, scatter_dim=1, gather_dim=2)
# reshape outputs back to [B, N, C]
x_output_shape = (B, N, C)
x = x.reshape(x_output_shape)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0):
super(MultiHeadCrossAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.q_linear = nn.Linear(d_model, d_model)
self.kv_linear = nn.Linear(d_model, d_model * 2)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, cond, mask=None):
# query/value: img tokens; key: condition; mask: if padding tokens
B, N, C = x.shape
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(2)
attn_bias = None
if mask is not None:
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = x.view(B, -1, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SeqParallelMultiHeadCrossAttention(MultiHeadCrossAttention):
def __init__(
self,
d_model,
num_heads,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__(d_model=d_model, num_heads=num_heads, attn_drop=attn_drop, proj_drop=proj_drop)
def forward(self, x, cond, mask=None):
# query/value: img tokens; key: condition; mask: if padding tokens
sp_group = get_sequence_parallel_group()
sp_size = dist.get_world_size(sp_group)
B, SUB_N, C = x.shape
N = SUB_N * sp_size
# shape:
# q, k, v: [B, SUB_N, NUM_HEADS, HEAD_DIM]
q = self.q_linear(x).view(B, -1, self.num_heads, self.head_dim)
kv = self.kv_linear(cond).view(B, -1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(2)
# apply all_to_all to gather sequence and split attention heads
q = all_to_all(q, sp_group, scatter_dim=2, gather_dim=1)
k = split_forward_gather_backward(k, get_sequence_parallel_group(), dim=2, grad_scale="down")
v = split_forward_gather_backward(v, get_sequence_parallel_group(), dim=2, grad_scale="down")
q = q.view(1, -1, self.num_heads // sp_size, self.head_dim)
k = k.view(1, -1, self.num_heads // sp_size, self.head_dim)
v = v.view(1, -1, self.num_heads // sp_size, self.head_dim)
# compute attention
attn_bias = None
if mask is not None:
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
# apply all to all to gather back attention heads and scatter sequence
x = x.view(B, -1, self.num_heads // sp_size, self.head_dim)
x = all_to_all(x, sp_group, scatter_dim=1, gather_dim=2)
# apply output projection
x = x.view(B, -1, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, num_patch, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final, x, shift, scale)
x = self.linear(x)
return x
class T2IFinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, num_patch, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True)
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5)
self.out_channels = out_channels
def forward(self, x, t):
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
# ===============================================
# Embedding Layers for Timesteps and Class Labels
# ===============================================
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
freqs = freqs.to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t, dtype):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
if t_freq.dtype != dtype:
t_freq = t_freq.to(dtype)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
return self.embedding_table(labels)
class SizeEmbedder(TimestepEmbedder):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.outdim = hidden_size
def forward(self, s, bs):
if s.ndim == 1:
s = s[:, None]
assert s.ndim == 2
if s.shape[0] != bs:
s = s.repeat(bs // s.shape[0], 1)
assert s.shape[0] == bs
b, dims = s.shape[0], s.shape[1]
s = rearrange(s, "b d -> (b d)")
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
s_emb = self.mlp(s_freq)
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
return s_emb
@property
def dtype(self):
return next(self.parameters()).dtype
class CaptionEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120):
super().__init__()
self.y_proj = Mlp(
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0
)
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5))
self.uncond_prob = uncond_prob
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None):
if train:
assert caption.shape[2:] == self.y_embedding.shape
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
caption = self.y_proj(caption)
return caption
# ===============================================
# Sine/Cosine Positional Embedding Functions
# ===============================================
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scale=1.0, base_size=None):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if not isinstance(grid_size, tuple):
grid_size = (grid_size, grid_size)
grid_h = np.arange(grid_size[0], dtype=np.float32) / scale
grid_w = np.arange(grid_size[1], dtype=np.float32) / scale
if base_size is not None:
grid_h *= base_size / grid_size[0]
grid_w *= base_size / grid_size[1]
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed(embed_dim, length, scale=1.0):
pos = np.arange(0, length)[..., None] / scale
return get_1d_sincos_pos_embed_from_grid(embed_dim, pos)
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb