File size: 9,027 Bytes
899c526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#include <torch/extension.h>
#include <vector>
#include "lietorch_gpu.h"
#include "lietorch_cpu.h"


#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")


/* Interface for cuda and c++ group operations

    enum group_t { SO3=1, SE3=2, Sim3=3 };
    X, Y, Z: (uppercase) Lie Group Elements
    a, b, c: (lowercase) Lie Algebra Elements
*/

// Unary operations
torch::Tensor expm(int group_index, torch::Tensor a) {
    CHECK_CONTIGUOUS(a);
    if (a.device().type() == torch::DeviceType::CPU) {
        return exp_forward_cpu(group_index, a);

    } else if (a.device().type() == torch::DeviceType::CUDA) {
        return exp_forward_gpu(group_index, a);
    }

    return a;
}

std::vector<torch::Tensor> expm_backward(int group_index, torch::Tensor grad, torch::Tensor a) {
    CHECK_CONTIGUOUS(a);
    CHECK_CONTIGUOUS(grad);
    if (a.device().type() == torch::DeviceType::CPU) {
        return exp_backward_cpu(group_index, grad, a);

    } else if (a.device().type() == torch::DeviceType::CUDA) {
        return exp_backward_gpu(group_index, grad, a);
    }

    return {};
}

torch::Tensor logm(int group_index, torch::Tensor X) {
    CHECK_CONTIGUOUS(X);
    if (X.device().type() == torch::DeviceType::CPU) {
        return log_forward_cpu(group_index, X);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return log_forward_gpu(group_index, X);
    }

    return X;
}

std::vector<torch::Tensor> logm_backward(int group_index, torch::Tensor grad, torch::Tensor X) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(grad);

    if (X.device().type() == torch::DeviceType::CPU) {
        return log_backward_cpu(group_index, grad, X);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return log_backward_gpu(group_index, grad, X);
    }

    return {};
}

torch::Tensor inv(int group_index, torch::Tensor X) {
    CHECK_CONTIGUOUS(X);

    if (X.device().type() == torch::DeviceType::CPU) {
        return inv_forward_cpu(group_index, X);
    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return inv_forward_gpu(group_index, X);
    }

    return X;
}

std::vector<torch::Tensor> inv_backward(int group_index, torch::Tensor grad, torch::Tensor X) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(grad);

    if (X.device().type() == torch::DeviceType::CPU) {
        return inv_backward_cpu(group_index, grad, X);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return inv_backward_gpu(group_index, grad, X);
    }

    return {};
}

// Binary operations

torch::Tensor mul(int group_index, torch::Tensor X, torch::Tensor Y) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(Y);

    if (X.device().type() == torch::DeviceType::CPU) {
        return mul_forward_cpu(group_index, X, Y);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return mul_forward_gpu(group_index, X, Y);
    }

    return X;
}

std::vector<torch::Tensor> mul_backward(int group_index, torch::Tensor grad, torch::Tensor X, torch::Tensor Y) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(Y);
    CHECK_CONTIGUOUS(grad);

    if (X.device().type() == torch::DeviceType::CPU) {
        return mul_backward_cpu(group_index, grad, X, Y);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return mul_backward_gpu(group_index, grad, X, Y);
    }

    return {};
}

torch::Tensor adj(int group_index, torch::Tensor X, torch::Tensor a) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(a);

    if (X.device().type() == torch::DeviceType::CPU) {
        return adj_forward_cpu(group_index, X, a);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return adj_forward_gpu(group_index, X, a);
    }

    return X;
}

std::vector<torch::Tensor> adj_backward(int group_index, torch::Tensor grad, torch::Tensor X, torch::Tensor a) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(a);
    CHECK_CONTIGUOUS(grad);

    if (X.device().type() == torch::DeviceType::CPU) {
        return adj_backward_cpu(group_index, grad, X, a);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return adj_backward_gpu(group_index, grad, X, a);
    }

    return {};
}

torch::Tensor adjT(int group_index, torch::Tensor X, torch::Tensor a) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(a);
    
    if (X.device().type() == torch::DeviceType::CPU) {
        return adjT_forward_cpu(group_index, X, a);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return adjT_forward_gpu(group_index, X, a);
    }

    return X;
}

std::vector<torch::Tensor> adjT_backward(int group_index, torch::Tensor grad, torch::Tensor X, torch::Tensor a) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(a);
    CHECK_CONTIGUOUS(grad);
    
    if (X.device().type() == torch::DeviceType::CPU) {
        return adjT_backward_cpu(group_index, grad, X, a);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return adjT_backward_gpu(group_index, grad, X, a);
    }

    return {};
}


torch::Tensor act(int group_index, torch::Tensor X, torch::Tensor p) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(p);

    if (X.device().type() == torch::DeviceType::CPU) {
        return act_forward_cpu(group_index, X, p);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return act_forward_gpu(group_index, X, p);
    }

    return X;
}

std::vector<torch::Tensor> act_backward(int group_index, torch::Tensor grad, torch::Tensor X, torch::Tensor p) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(p);
    CHECK_CONTIGUOUS(grad);

    if (X.device().type() == torch::DeviceType::CPU) {
        return act_backward_cpu(group_index, grad, X, p);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return act_backward_gpu(group_index, grad, X, p);
    }

    return {};
}

torch::Tensor act4(int group_index, torch::Tensor X, torch::Tensor p) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(p);
    
    if (X.device().type() == torch::DeviceType::CPU) {
        return act4_forward_cpu(group_index, X, p);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return act4_forward_gpu(group_index, X, p);
    }

    return X;
}

std::vector<torch::Tensor> act4_backward(int group_index, torch::Tensor grad, torch::Tensor X, torch::Tensor p) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(p);
    CHECK_CONTIGUOUS(grad);

    if (X.device().type() == torch::DeviceType::CPU) {
        return act4_backward_cpu(group_index, grad, X, p);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return act4_backward_gpu(group_index, grad, X, p);
    }

    return {};
}


torch::Tensor projector(int group_index, torch::Tensor X) {
    CHECK_CONTIGUOUS(X);
    
    if (X.device().type() == torch::DeviceType::CPU) {
        return orthogonal_projector_cpu(group_index, X);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return orthogonal_projector_gpu(group_index, X);
    }

    return X;
}


torch::Tensor as_matrix(int group_index, torch::Tensor X) {
    CHECK_CONTIGUOUS(X);
    
    if (X.device().type() == torch::DeviceType::CPU) {
        return as_matrix_forward_cpu(group_index, X);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return as_matrix_forward_gpu(group_index, X);
    }

    return X;
}

torch::Tensor Jinv(int group_index, torch::Tensor X, torch::Tensor a) {
    CHECK_CONTIGUOUS(X);
    CHECK_CONTIGUOUS(a);

    if (X.device().type() == torch::DeviceType::CPU) {
        return jleft_forward_cpu(group_index, X, a);

    } else if (X.device().type() == torch::DeviceType::CUDA) {
        return jleft_forward_gpu(group_index, X, a);
    }

    return a;
}

// {exp, log, inv, mul, adj, adjT, act, act4} forward/backward bindings
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("expm", &expm, "exp map forward");
  m.def("expm_backward", &expm_backward, "exp map backward");

  m.def("logm", &logm, "log map forward");
  m.def("logm_backward", &logm_backward, "log map backward");

  m.def("inv", &inv, "inverse operator");
  m.def("inv_backward", &inv_backward, "inverse operator backward");

  m.def("mul", &mul, "group operator");
  m.def("mul_backward", &mul_backward, "group operator backward");

  m.def("adj", &adj, "adjoint operator");
  m.def("adj_backward", &adj_backward, "adjoint operator backward");

  m.def("adjT", &adjT, "transposed adjoint operator");
  m.def("adjT_backward", &adjT_backward, "transposed adjoint operator backward");

  m.def("act", &act, "action on point");
  m.def("act_backward", &act_backward, "action on point backward");

  m.def("act4", &act4, "action on homogeneous point");
  m.def("act4_backward", &act4_backward, "action on homogeneous point backward");

  // functions with no gradient
  m.def("as_matrix", &as_matrix, "convert to matrix");
  m.def("projector", &projector, "orthogonal projection matrix");
  m.def("Jinv", &Jinv, "left inverse jacobian operator");

};