File size: 10,255 Bytes
112efaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39706b3
 
3ae9d07
 
39706b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae9d07
39706b3
 
 
 
112efaf
 
 
 
 
 
 
ca8cff5
 
 
 
 
 
 
 
 
 
 
 
 
 
112efaf
 
 
 
 
 
1adc128
39706b3
1adc128
39706b3
3ae9d07
 
 
 
 
 
 
1adc128
3ae9d07
 
 
 
 
 
 
 
 
 
 
 
1adc128
3ae9d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1adc128
3ae9d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1adc128
3ae9d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39706b3
3ae9d07
 
 
1adc128
3ae9d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import streamlit as st
import numpy as np
import pandas as pd
import pickle
import pygad

from VQGAE.models import VQGAE, OrderingNetwork
from CGRtools.containers import QueryContainer
from VQGAE.utils import frag_counts_to_inds, restore_order, decode_molecules

# define groups to filter
allene = QueryContainer()
allene.add_atom("C")
allene.add_atom("A")
allene.add_atom("A")
allene.add_bond(1, 2, 2)
allene.add_bond(1, 3, 2)

peroxide_charge = QueryContainer()
peroxide_charge.add_atom("O", charge=-1)
peroxide_charge.add_atom("O")
peroxide_charge.add_bond(1, 2, 1)

peroxide = QueryContainer()
peroxide.add_atom("O")
peroxide.add_atom("O")
peroxide.add_bond(1, 2, 1)


def tanimoto_kernel(x, y):
    """
    "The Tanimoto coefficient is a measure of the similarity between two sets.
    It is defined as the size of the intersection divided by the size of the union of the sample sets."

    The Tanimoto coefficient is also known as the Jaccard index

    Adoppted from https://github.com/cimm-kzn/CIMtools/blob/master/CIMtools/metrics/pairwise.py

    :param x: 2D array of features.
    :param y: 2D array of features.
    :return: The Tanimoto coefficient between the two arrays.
    """
    x_dot = np.dot(x, y.T)

    x2 = (x ** 2).sum(axis=1)
    y2 = (y ** 2).sum(axis=1)

    len_x2 = len(x2)
    len_y2 = len(y2)

    result = x_dot / (np.array([x2] * len_y2).T + np.array([y2] * len_x2) - x_dot)
    result[np.isnan(result)] = 0

    return result


def fitness_func_batch(ga_instance, solutions, solutions_indices):
    frag_counts = np.array(solutions)
    if len(frag_counts.shape) == 1:
        frag_counts = frag_counts[np.newaxis, :]

    # prediction of activity by random forest
    rf_score = rf_model.predict_proba(frag_counts)[:, 1]

    # size penalty if molecule too small
    mol_size = frag_counts.sum(-1).astype(np.int64)
    size_penalty = np.where(mol_size < 18, -1.0, 0.)

    # adding dissimilarity so it generates different solutions
    dissimilarity_score = 1 - tanimoto_kernel(frag_counts, X).max(-1)
    dissimilarity_score += np.where(dissimilarity_score == 0, -5, 0)

    # full fitness function
    fitness = 0.5 * rf_score + 0.3 * dissimilarity_score + size_penalty

    # prediction of ordering score
    if use_ordering_score:
        frag_inds = frag_counts_to_inds(frag_counts, max_atoms=51)
        _, ordering_scores = restore_order(frag_inds, ordering_model)
        ordering_scores = np.array(ordering_scores)
        fitness += 0.2 * ordering_scores

    return fitness.tolist()


def on_generation_progress(ga):
    global ga_progress
    global ga_bar
    ga_progress = ga_progress + 1
    ga_bar.progress(ga_progress // num_generations * 100, text=ga_progress_text)


@st.cache_data
def load_data(batch_size):
    X = np.load("saved_model/tubulin_qsar_class_train_data_vqgae.npz")["x"]
    Y = np.load("saved_model/tubulin_qsar_class_train_data_vqgae.npz")["y"]
    with open("saved_model/rf_class_train_tubulin.pickle", "rb") as inp:
        rf_model = pickle.load(inp)

    vqgae_model = VQGAE.load_from_checkpoint(
        "saved_model/vqgae.ckpt",
        task="decode",
        batch_size=batch_size,
        map_location="cpu"
    )
    vqgae_model = vqgae_model.eval()

    ordering_model = OrderingNetwork.load_from_checkpoint(
        "saved_model/ordering_network.ckpt",
        batch_size=batch_size,
        map_location="cpu"
    )
    ordering_model = ordering_model.eval()
    return X, Y, rf_model, vqgae_model, ordering_model

st.title('Inverse QSAR of Tubulin inhibitors in colchicine site with VQGAE')

batch_size = 500
X, Y, rf_model, vqgae_model, ordering_model = load_data(batch_size)

assert X.shape == (603, 4096)

with st.sidebar:
    with st.form("my_form"):
        num_generations = st.slider(
            'Number of generations for GA',
            min_value=3,
            max_value=40,
            value=5
        )

        parent_selection_type = st.selectbox(
            label='Parent selection type',
            options=(
                'Steady-state selection',
                'Roulette wheel selection',
                'Stochastic universal selection',
                'Rank selection',
                'Random selection',
                'Tournament selection'
            ),
            index=1
        )

        parent_selection_translator = {
            "Steady-state selection": "sss",
            "Roulette wheel selection": "rws",
            "Stochastic universal selection": "sus",
            "Rank selection": "rank",
            "Random selection": "random",
            "Tournament selection": "tournament",
        }

        parent_selection_type = parent_selection_translator[parent_selection_type]

        crossover_type = st.selectbox(
            label='Crossover type',
            options=(
                'Single point',
                'Two points',
            ),
            index=0
        )

        crossover_translator = {
            "Single point": "single_point",
            "Two points": "two_points",
        }

        crossover_type = crossover_translator[crossover_type]

        num_parents_mating = st.slider(
            'Pecentage of parents mating taken from initial population',
            min_value=0,
            max_value=X.shape[0],
            step=0.01,
            value=0.33,
        ) * X.shape[0] * 10 // 10

        keep_parents = st.slider(
            'Percentage of parents kept taken from number of parents mating',
            min_value=1,
            max_value=num_parents_mating,
            value=int(num_parents_mating * 0.66 // 10 * 10) # 2/3 of num_parents_mating
        )

        use_ordering_score = st.toggle('Use ordering score', value=True)

        random_seed = int(st.number_input("Random seed", value=42, placeholder="Type a number..."))
        st.form_submit_button('Start optimisation')

ga_instance = pygad.GA(
    fitness_func=fitness_func_batch,
    on_generation=on_generation_progress,
    initial_population=X,
    num_genes=X.shape[-1],
    fitness_batch_size=batch_size,
    num_generations=num_generations,
    num_parents_mating=num_parents_mating,
    parent_selection_type=parent_selection_type,
    crossover_type=crossover_type,
    mutation_type="adaptive",
    mutation_percent_genes=[10, 5],
    # https://pygad.readthedocs.io/en/latest/pygad.html#use-adaptive-mutation-in-pygad
    save_best_solutions=False,
    save_solutions=True,
    keep_elitism=0,  # turn it off to make keep_parents work
    keep_parents=keep_parents,
    suppress_warnings=True,
    random_seed=random_seed,
    gene_type=int
)

ga_progress = 0
ga_progress_text = "Genetic optimisation in progress. Please wait."
ga_bar = st.progress(ga_progress // num_generations * 100, text=ga_progress_text)
ga_instance.run()

with st.spinner('Getting unique solutions'):
    unique_solutions = list(set(tuple(s) for s in ga_instance.solutions))
st.success(f'{len(unique_solutions)} solutions were obtained')

scores = {
    "rf_score": [],
    "similarity_score": []
}

if use_ordering_score:
    scores["ordering_score"] = []

rescoring_progress = 0
rescoring_progress_text = "Rescoring obtained solutions"
rescoring_bar = st.progress(0, text=rescoring_progress_text)
total_rescoring_steps = len(unique_solutions) // batch_size + 1
for i in range(total_rescoring_steps):
    vqgae_latents = unique_solutions[i * batch_size: (i + 1) * batch_size]
    frag_counts = np.array(vqgae_latents)
    rf_scores = rf_model.predict_proba(frag_counts)[:, 1]
    similarity_scores = tanimoto_kernel(frag_counts, X).max(-1)
    scores["rf_score"].extend(rf_scores.tolist())
    scores["similarity_score"].extend(similarity_scores.tolist())
    if use_ordering_score:
        frag_inds = frag_counts_to_inds(frag_counts, max_atoms=51)
        _, ordering_scores = restore_order(frag_inds, ordering_model)
        scores["ordering_score"].extend(ordering_scores)
    rescoring_bar.progress(i // total_rescoring_steps * 100, text=rescoring_progress_text)

sc_df = pd.DataFrame(scores)

if use_ordering_score:
    chosen_gen = sc_df[(sc_df["similarity_score"] < 0.95) & (sc_df["rf_score"] > 0.5) & (sc_df["ordering_score"] > 0.7)]
else:
    chosen_gen = sc_df[
        (sc_df["similarity_score"] < 0.95) & (sc_df["rf_score"] > 0.5)]

chosen_ids = chosen_gen.index.to_list()
chosen_solutions = np.array([unique_solutions[ind] for ind in chosen_ids])
gen_frag_inds = frag_counts_to_inds(chosen_solutions, max_atoms=51)
st.info(f'The number of chosen solutions is {gen_frag_inds.shape[0]}', icon="ℹ️")

gen_molecules = []
results = {"smiles": [], "ordering_score": [], "validity": []}
decoding_progress = 0
decoding_progress_text = "Decoding chosen solutions"
decoding_bar = st.progress(0, text=decoding_progress_text)
total_decoding_steps = gen_frag_inds.shape[0] // batch_size + 1
for i in range(total_decoding_steps):
    inputs = gen_frag_inds[i * batch_size: (i + 1) * batch_size]
    canon_order_inds, scores = restore_order(
        frag_inds=inputs,
        ordering_model=ordering_model,
    )
    molecules, validity = decode_molecules(
        ordered_frag_inds=canon_order_inds,
        vqgae_model=vqgae_model
    )
    gen_molecules.extend(molecules)
    results["smiles"].extend([str(molecule) for molecule in molecules])
    results["ordering_score"].extend(scores)
    results["validity"].extend([1 if i else 0 for i in validity])
    decoding_bar.progress(i // total_decoding_steps * 100, text=rescoring_progress_text)

gen_stats = pd.DataFrame(results)
full_stats = pd.concat([gen_stats, chosen_gen[["similarity_score", "rf_score"]].reset_index(), ], axis=1, ignore_index=False)

st.dataframe(full_stats)

# valid_gen_stats = full_stats[full_stats.valid == 1]
#
# valid_gen_mols = []
# for i, record in zip(list(valid_gen_stats.index), valid_gen_stats.to_dict("records")):
#     mol = gen_molecules[i]
#     valid_gen_mols.append(mol)
#
# filtered_gen_mols = []
# for mol in valid_gen_mols:
#     is_frag = allene < mol or peroxide_charge < mol or peroxide < mol
#     is_macro = False
#     for ring in mol.sssr:
#         if len(ring) > 8 or len(ring) < 4:
#             is_macro = True
#             break
#     if not is_frag and not is_macro:
#         filtered_gen_mols.append(mol)