File size: 7,472 Bytes
112efaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca8cff5
 
 
 
 
 
 
 
 
 
 
 
 
 
112efaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import streamlit as st
import numpy as np
import pandas as pd
import pickle
import pygad

from tqdm.auto import tqdm
from VQGAE.models import VQGAE, OrderingNetwork
from CGRtools.containers import QueryContainer
from VQGAE.utils import frag_counts_to_inds, restore_order, decode_molecules

# define groups to filter
allene = QueryContainer()
allene.add_atom("C")
allene.add_atom("A")
allene.add_atom("A")
allene.add_bond(1, 2, 2)
allene.add_bond(1, 3, 2)

peroxide_charge = QueryContainer()
peroxide_charge.add_atom("O", charge=-1)
peroxide_charge.add_atom("O")
peroxide_charge.add_bond(1, 2, 1)

peroxide = QueryContainer()
peroxide.add_atom("O")
peroxide.add_atom("O")
peroxide.add_bond(1, 2, 1)


def tanimoto_kernel(x, y):
    """
    "The Tanimoto coefficient is a measure of the similarity between two sets.
    It is defined as the size of the intersection divided by the size of the union of the sample sets."

    The Tanimoto coefficient is also known as the Jaccard index

    Adoppted from https://github.com/cimm-kzn/CIMtools/blob/master/CIMtools/metrics/pairwise.py

    :param x: 2D array of features.
    :param y: 2D array of features.
    :return: The Tanimoto coefficient between the two arrays.
    """
    x_dot = np.dot(x, y.T)

    x2 = (x ** 2).sum(axis=1)
    y2 = (y ** 2).sum(axis=1)

    len_x2 = len(x2)
    len_y2 = len(y2)

    result = x_dot / (np.array([x2] * len_y2).T + np.array([y2] * len_x2) - x_dot)
    result[np.isnan(result)] = 0

    return result


def rescoring(vqgae_latents):
    frag_counts = np.array(vqgae_latents)
    rf_scores = rf_model.predict_proba(frag_counts)[:, 1]
    similarity_scores = tanimoto_kernel(frag_counts, X).max(-1)

    frag_inds = frag_counts_to_inds(frag_counts, max_atoms=51)
    _, ordering_scores = restore_order(frag_inds, ordering_model)
    return rf_scores.tolist(), similarity_scores.tolist(), ordering_scores


def fitness_func_batch(ga_instance, solutions, solutions_indices):
    frag_counts = np.array(solutions)

    # prediction of activity by random forest
    rf_score = rf_model.predict_proba(frag_counts)[:, 1]

    # size penalty if molecule too small
    mol_size = frag_counts.sum(-1).astype(np.int64)
    size_penalty = np.where(mol_size < 18, -1.0, 0.)

    # adding dissimilarity so it generates different solutions
    dissimilarity_score = 1 - tanimoto_kernel(frag_counts, X).max(-1)
    dissimilarity_score += np.where(dissimilarity_score == 0, -5, 0)

    # prediction of ordering score
    frag_inds = frag_counts_to_inds(frag_counts, max_atoms=51)
    _, ordering_scores = restore_order(frag_inds, ordering_model)
    ordering_scores = np.array(ordering_scores)

    # full fitness function
    fitness = 0.5 * rf_score + 0.3 * dissimilarity_score + size_penalty + 0.2 * ordering_scores
    return fitness.tolist()


def on_generation_progress(ga):
    pbar.update(1)


@st.cache_data
def load_data(batch_size):
    X = np.load("saved_model/tubulin_qsar_class_train_data_vqgae.npz")["x"]
    Y = np.load("saved_model/tubulin_qsar_class_train_data_vqgae.npz")["y"]
    with open("saved_model/rf_class_train_tubulin.pickle", "rb") as inp:
        rf_model = pickle.load(inp)

    vqgae_model = VQGAE.load_from_checkpoint(
        "saved_model/vqgae.ckpt",
        task="decode",
        batch_size=batch_size,
        map_location="cpu"
    )
    vqgae_model = vqgae_model.eval()

    ordering_model = OrderingNetwork.load_from_checkpoint(
        "saved_model/ordering_network.ckpt",
        batch_size=batch_size,
        map_location="cpu"
    )
    ordering_model = ordering_model.eval()
    return X, Y, rf_model, vqgae_model, ordering_model


st.title('Inverse QSAR of Tubulin inhibitors in colchicine site with VQGAE')

data_load_state = st.text('Loading data...')
batch_size = 500
X, Y, rf_model, vqgae_model, ordering_model = load_data(batch_size)

data_load_state.text("Done! (using st.cache_data)")

# initial_pop = X
#
# num_parents_mating = int(initial_pop.shape[0] * 0.33 // 10 * 10)
# keep_parents = int(num_parents_mating * 0.66 // 10 * 10)
# print(num_parents_mating, keep_parents)
#
# num_generations = 30
# with tqdm(total=num_generations) as pbar:
#     ga_instance = pygad.GA(
#         fitness_func=fitness_func_batch,
#         on_generation=on_generation_progress,
#         initial_population=initial_pop,
#         num_genes=initial_pop.shape[-1],
#         fitness_batch_size=batch_size,
#         num_generations=num_generations,
#         num_parents_mating=num_parents_mating,
#         parent_selection_type="rws",
#         crossover_type="single_point",
#         mutation_type="adaptive",
#         mutation_percent_genes=[10, 5],
#         # https://pygad.readthedocs.io/en/latest/pygad.html#use-adaptive-mutation-in-pygad
#         save_best_solutions=False,
#         save_solutions=True,
#         keep_elitism=0,  # turn it off to make keep_parents work
#         keep_parents=keep_parents,  # 2/3 of num_parents_mating
#         # parallel_processing=['process', 5],
#         suppress_warnings=True,
#         random_seed=42,
#         gene_type=int
#     )
#     ga_instance.run()
#
# solutions = ga_instance.solutions
# solutions = list(set(tuple(s) for s in solutions))
# print(len(solutions))
#
# scores = {"rf_score": [], "similarity_score": [], "ordering_score": []}
# for i in tqdm(range(len(solutions) // 100 + 1)):
#     solution = solutions[i * 100: (i + 1) * 100]
#     rf_score, similarity_score, ordering_score = rescoring(solution)
#     scores["rf_score"].extend(rf_score)
#     scores["similarity_score"].extend(similarity_score)
#     scores["ordering_score"].extend(ordering_score)
#
# sc_df = pd.DataFrame(scores)
#
# chosen_gen = sc_df[(sc_df["similarity_score"] < 0.95) & (sc_df["rf_score"] > 0.5) & (sc_df["ordering_score"] > 0.7)]
#
# chosen_ids = chosen_gen.index.to_list()
# chosen_solutions = np.array([solutions[ind] for ind in chosen_ids])
# gen_frag_inds = frag_counts_to_inds(chosen_solutions, max_atoms=51)
#
# gen_molecules = []
# results = {"score": [], "valid": []}
# for i in tqdm(range(gen_frag_inds.shape[0] // batch_size + 1)):
#     inputs = gen_frag_inds[i * batch_size: (i + 1) * batch_size]
#     canon_order_inds, scores = restore_order(
#         frag_inds=inputs,
#         ordering_model=ordering_model,
#     )
#     molecules, validity = decode_molecules(
#         ordered_frag_inds=canon_order_inds,
#         vqgae_model=vqgae_model
#     )
#     gen_molecules.extend(molecules)
#     results["score"].extend(scores)
#     results["valid"].extend([1 if i else 0 for i in validity])
#
# gen_stats = pd.DataFrame(results)
# full_stats = pd.concat([chosen_gen.reset_index(), gen_stats], axis=1, ignore_index=False)
# valid_gen_stats = full_stats[full_stats.valid == 1]
# valid_gen_mols = []
# for i, record in zip(list(valid_gen_stats.index), valid_gen_stats.to_dict("records")):
#     mol = gen_molecules[i]
#     mol.meta.update({
#         "rf_score": record["rf_score"],
#         "similarity_score": record["similarity_score"],
#         "ordering_score": record["ordering_score"],
#     })
#     valid_gen_mols.append(mol)
#
# filtered_gen_mols = []
# for mol in valid_gen_mols:
#     is_frag = allene < mol or peroxide_charge < mol or peroxide < mol
#     is_macro = False
#     for ring in mol.sssr:
#         if len(ring) > 8 or len(ring) < 4:
#             is_macro = True
#             break
#     if not is_frag and not is_macro:
#         filtered_gen_mols.append(mol)