RAG-3 / app.py
yiyii's picture
Update app.py
4cf6cf0 verified
raw
history blame contribute delete
No virus
14.2 kB
import gradio as gr
from deepface import DeepFace
from transformers import pipeline
import io
import base64
import pandas as pd
import numpy as ny
from huggingface_hub import InferenceClient
from langchain.text_splitter import TokenTextSplitter
# from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import Chroma
# from langchain.chain import RetrievalQA
# from langchain import PromptTemplate
from langchain.document_loaders import PyPDFLoader
get_blip = pipeline("image-to-text",model="Salesforce/blip-image-captioning-large")
# using deepface to detect age, gender, emotion(happy,neutral,surprise,sad,angry,fear,disgust)
def analyze_face(image):
#convert PIL image to numpy array
image_array = ny.array(image)
face_result = DeepFace.analyze(image_array, actions=['age','gender','emotion'], enforce_detection=False)
#convert the resulting dictionary to a dataframe
df = pd.DataFrame(face_result)
return df['dominant_gender'][0],df['age'][0],df['dominant_emotion'][0]
#The [0] at the end is for accessing the value at the first row in a DataFrame column.
#using blip to generate caption
#image_to_base64_str function to convert image to base64 format
def image_to_base64_str(pil_image):
byte_arr = io.BytesIO()
pil_image.save(byte_arr, format='PNG')
byte_arr = byte_arr.getvalue()
return str(base64.b64encode(byte_arr).decode('utf-8'))
#captioner function to take an image
def captioner(image):
base64_image = image_to_base64_str(image)
caption = get_blip(base64_image)
return caption[0]['generated_text']
#The [0] at the beginning is for accessing the first element in a container (like a list or dictionary).
def get_image_info(image):
#call captioner() function
image_caption = captioner(image)
#call analyze_face() function
gender, age, emotion = analyze_face(image)
#return image_caption,face_attributes
return image_caption, gender, age, emotion
# loading the embedding model
model_name = "BAAI/bge-large-en-v1.5"
model_kwargs = {'device':'cpu'}
#encode_kwargs = {'normalize_embeddings':False}
# the embeddings will be normalized, normalization can make cosine similarity(angular distance) calculations more effective,
# bacause it is comparison tasks based on directional similarity between vectors.
encode_kwargs = {'normalize_embeddings':True}
# initialize embeddings
embeddings = HuggingFaceBgeEmbeddings(model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs)
print("embeddings model loaded....................")
client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
def generate(image, pdfs, temperature=0.9, max_new_tokens=1500, top_p=0.95, repetition_penalty=1.0, chunk_size=200, chunk_overlap=20, top_k=3):
# the order of parameter should be same as the oreder of gradio interface's inputs
# SyntaxError: non-default argument follows default argument
# # load the txt file
# with open("story.txt", "r") as f:
# # r: read mode, reading only
# state_of_the_union = f.read()
# # read the file into a single string
# load uploaded pdf file
documents = []
for pdf in pdfs:
loader = PyPDFLoader(pdf.name)
#loader = PyPDFLoader(pdf)
# PyPDFLoader() will read and extract text content form a PDF
print(pdf) # /tmp/gradio/31ecc15809f1639fb96bebad2eac3dfe41eb5fce/After-Twenty-Years.pdf
print(pdf.name) # /tmp/gradio/31ecc15809f1639fb96bebad2eac3dfe41eb5fce/After-Twenty-Years.pdf
documents.extend(loader.load())
# loader.load() will return a list of document objects, and then documents.extend() will add all these returned objects to documents = [].
# so documents = [] will have all PDFs content
# split the content into chunks
text_splitter = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
# TokenTextSplitter() can ensure the integrity of words
# each chunk to overlap with the previous chunk by 20 tokens
#texts = text_splitter.split_text(state_of_the_union)
texts = text_splitter.split_documents(documents)
print("...........................................")
# print the first chunk
print("text[0]: ", texts[0])
# create embeddings for chunks by using bge model, and then save these vectors into chroma vector database
# use hnsw(hierarchical navigable small world) index to facilitate efficient searching
# use cosine similarity to measure similiarity.(similarity is crucial in performing similarity search.)
# hnsw: builds a graph-based index for approximate nearest neighber searches.
# hnsw is used for organizing the data into an efficient structure that supports rapid retrieval operations(speed up the search).
# cosine similarity is used for telling the hnsw algorithm how to measure the distance between vectors.
# by setting space to cosine space, the index will operate using cosine similarity to measuer the vectors' similarity.
#vector_store = Chroma.from_texts(texts, embeddings, collection_metadata = {"hnsw:space":"cosine"}, persist_directory="stores/story_cosine" )
vector_store = Chroma.from_documents(texts, embeddings, collection_metadata = {"hnsw:space":"cosine"}, persist_directory="stores/story_cosine" )
print("vector store created........................")
load_vector_store = Chroma(persist_directory="stores/story_cosine", embedding_function=embeddings)
# persist_directory="stores/story_cosine": laod the existing vector store form "stores/story_cosine"
# embedding_function=embeddings: using the bge embedding model when add the new data to the vector store
# Only get the k most similar document from the dataset
retriever = load_vector_store.as_retriever(search_kwargs={"k":top_k})
image_caption, gender, age, emotion = get_image_info(image)
print("............................................")
print("image_caption:", image_caption)
print("age:", age)
print("gender:", gender)
print("emotion:", emotion)
print("............................................")
query = f"{image_caption}. {emotion}{age} years old {gender}"
# retrieve documents based on query
documents = retriever.get_relevant_documents(query)
# the embedding of the query abd comparing query embedding and chunks embedding are handle internally by the get_relevant_documents() method.
# embedding query: When a query is made, the retriever first converts the query text into a vector using the same embedding model
# that was used for creating the document vectors in the store. This ensures that the query vector and document vectors are compatible for similarity comparisons.
# the method of comparing the similarity between query vector and chunk vectors is:
# cosine similarity and hnsw. because we've configured the vector store with {"hnsw:space":"cosine"}.
# the methods used for both embedding the query and comparing the query vector with the stored document vectors are directly influenced by the configurations of the vector store we set up.
# get_relevant_document() use the embedding function specified when we set up the Chroma database.
if documents:
print("document:", dir(documents[0]))
# print the directory of the methods and attributes of the first document
print(documents[0])
print(".....................................")
print(documents)
else:
print("no documents")
# dir(documents[0]):
"""
document: ['Config', '__abstractmethods__', '__annotations__', '__class__', '__class_vars__', '__config__', '__custom_root_type__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__exclude_fields__',
'__fields__', '__fields_set__', '__format__', '__ge__', '__get_validators__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__include_fields__', '__init__', '__init_subclass__', '__iter__', '__json_encoder__',
'__le__', '__lt__', '__module__', '__ne__', '__new__', '__post_root_validators__', '__pre_root_validators__', '__pretty__', '__private_attributes__', '__reduce__', '__reduce_ex__', '__repr__', '__repr_args__', '__repr_name__',
'__repr_str__', '__rich_repr__', '__schema_cache__', '__setattr__', '__setstate__', '__signature__', '__sizeof__', '__slots__', '__str__', '__subclasshook__', '__try_update_forward_refs__', '__validators__', '_abc_impl', '_calculate_keys',
'_copy_and_set_values', '_decompose_class', '_enforce_dict_if_root', '_get_value', '_init_private_attributes', '_iter', 'construct', 'copy', 'dict', 'from_orm', 'get_lc_namespace', 'is_lc_serializable', 'json', 'lc_attributes', 'lc_id',
'lc_secrets', 'metadata', 'page_content', 'parse_file', 'parse_obj', 'parse_raw', 'schema', 'schema_json', 'to_json', 'to_json_not_implemented', 'type', 'update_forward_refs', 'validate']
"""
# context = ' '.join([doc.page_content for doc in documents])
#context = '\n'.join([f"Document {index + 1}: {doc}" for index, doc in enumerate(documents)])
# make the documents' format more clear
context = '\n'.join([f"Document {index + 1}: {doc.page_content}" for index, doc in enumerate(documents)])
#prompt = f"[INS] Generate a story based on person’s emotion: {emotion}, age: {age}, gender: {gender} of the image, and image’s caption: {image_caption}. Please use simple words and a child-friendly tone for children, a mature tone for adults, and a considerate, reflective tone for elders.[/INS]"
print("....................................................................")
print("context:",context)
#prompt = f"[INS] Generate a story based on person’s emotion: {emotion}, age: {age}, gender: {gender} of the image, and image’s caption: {image_caption}. The following are some sentence examples: {context}[/INS]"
prompt = (
f"[INS] Please generate a detailed and engaging story based on the person's emotion: {emotion}, "
f"age: {age}, and gender: {gender} shown in the image. Begin with the scene described in the image's caption: '{image_caption}'. "
f"Just use the following example story plots and formats as an inspiration: "
f"{context} "
f"The generated story should include a beginning, middle, and end, and the complete story should approximately be {max_new_tokens} words.[/INS]"
# f"Feel free to develop a complete story in depth and the generated story should approximately be {max_new_tokens} words.[/INS]"
)
print("prompt:", prompt)
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
# return_full_text=False: only has generated story
# return_full_text=True: include original prompt and generated story
output = ""
for response in stream:
output += response.token.text
# yield "".join(output)
yield output
print("..........................................................")
print("generated story:", output)
return output
demo = gr.Interface(fn=generate,
# the order of inputs should be same as the oreder of generate function's parameter
inputs=[
#gr.Video(sources=["webcam"], label="video")
gr.Image(sources=["upload", "webcam"], label="Upload Image", type="pil"),
gr.Files(file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDFs"),
# select multiple files at once(control+a), instead of uploading files incremently!!!!!!!!!
gr.Slider(
label="temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="max new tokens",
value=1500,
minimum=0,
maximum=3000,
step=1.0,
interactive=True,
info="The maximum numbers of new tokens"),
gr.Slider(
label="top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
gr.Slider(
label="chunk_size",
value=200,
minimum=50,
maximum=500,
step=1.0,
interactive=True,
info="Length of retrieved chunks",
),
gr.Slider(
label="chunk_overlap",
value=20,
minimum=0,
maximum=50,
step=1.0,
interactive=True,
info="Number of overlappong words between chunks",
),
gr.Slider(
label="top-k",
value=3,
minimum=1,
maximum=10,
step=1.0,
interactive=True,
info="Number of top relevant documents to retrieve",
)
],
outputs=[gr.Textbox(label="Generated Story")],
title="story generation",
description="generate a story for you",
allow_flagging="never"
)
demo.launch(debug=(True))