import argparse import itertools import json import os import random import time from functools import partial from typing import Optional import torch from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoTokenizer from vqa import VQA from vqa_eval import VQAEval ds_collections = { 'vqav2_val': { 'train': 'data/vqav2/vqav2_train.jsonl', 'test': 'data/vqav2/vqav2_val.jsonl', 'question': 'data/vqav2/v2_OpenEnded_mscoco_val2014_questions.json', 'annotation': 'data/vqav2/v2_mscoco_val2014_annotations.json', 'metric': 'vqa_score', 'max_new_tokens': 10, }, 'okvqa_val': { 'train': 'data/okvqa/okvqa_train.jsonl', 'test': 'data/okvqa/okvqa_val.jsonl', 'question': 'data/okvqa/OpenEnded_mscoco_val2014_questions.json', 'annotation': 'data/okvqa/mscoco_val2014_annotations.json', 'metric': 'vqa_score', 'max_new_tokens': 10, }, 'textvqa_val': { 'train': 'data/textvqa/textvqa_train.jsonl', 'test': 'data/textvqa/textvqa_val.jsonl', 'question': 'data/textvqa/textvqa_val_questions.json', 'annotation': 'data/textvqa/textvqa_val_annotations.json', 'metric': 'vqa_score', 'max_new_tokens': 10, }, 'vizwiz_val': { 'train': 'data/vizwiz/vizwiz_train.jsonl', 'test': 'data/vizwiz/vizwiz_val.jsonl', 'question': 'data/vizwiz/vizwiz_val_questions.json', 'annotation': 'data/vizwiz/vizwiz_val_annotations.json', 'metric': 'vqa_score', 'max_new_tokens': 10, }, 'docvqa': { 'train': 'data/DocVQA/train.jsonl', 'test': 'data/DocVQA/val.jsonl', # 'question': '', 'annotation': './data/DocVQA/val/val_v1.0.json', 'metric': 'anls', 'max_new_tokens': 100, }, 'infographicsvqa': { 'train': 'data/InfographicsVQA/train.jsonl', 'test': 'data/InfographicsVQA/val.jsonl', # 'question': '', 'annotation': './data/InfographicsVQA/infographicVQA_val_v1.0.json', 'metric': 'anls', 'max_new_tokens': 100, }, 'chartqa': { 'train': 'data/ChartQA/train.jsonl', 'test': 'data/ChartQA/val_human.jsonl', # 'question': '', # 'annotation': '', 'metric': 'relaxed_accuracy', 'max_new_tokens': 100, }, 'gqa': { 'train': 'data/GQA/train.jsonl', 'test': 'data/GQA/testdev_balanced.jsonl', # 'question': '', # 'annotation': '', 'metric': 'accuracy', 'max_new_tokens': 10, }, 'ocrvqa': { 'train': 'data/OCR-VQA/train.jsonl', 'test': 'data/OCR-VQA/val.jsonl', # 'question': '', # 'annotation': '', 'metric': 'accuracy', 'max_new_tokens': 10, }, 'ai2diagram': { 'train': 'data/AI2Diagram/train.jsonl', 'test': 'data/AI2Diagram/test.jsonl', # 'question': '', # 'annotation': '', 'metric': 'accuracy', 'max_new_tokens': 10, } } # https://github.com/google-research/pix2struct/blob/main/pix2struct/metrics.py#L81 def relaxed_correctness(target: str, prediction: str, max_relative_change: float = 0.05) -> bool: """Calculates relaxed correctness. The correctness tolerates certain error ratio defined by max_relative_change. See https://arxiv.org/pdf/2203.10244.pdf, end of section 5.1: “Following Methani et al. (2020), we use a relaxed accuracy measure for the numeric answers to allow a minor inaccuracy that may result from the automatic data extraction process. We consider an answer to be correct if it is within 5% of the gold answer. For non-numeric answers, we still need an exact match to consider an answer to be correct.” Args: target: Target string. prediction: Predicted string. max_relative_change: Maximum relative change. Returns: Whether the prediction was correct given the specified tolerance. """ def _to_float(text: str) -> Optional[float]: try: if text.endswith("%"): # Convert percentages to floats. return float(text.rstrip("%")) / 100.0 else: return float(text) except ValueError: return None prediction_float = _to_float(prediction) target_float = _to_float(target) if prediction_float is not None and target_float: relative_change = abs( prediction_float - target_float) / abs(target_float) return relative_change <= max_relative_change else: return prediction.lower() == target.lower() def evaluate_relaxed_accuracy(entries): scores = [] for elem in entries: score = max([relaxed_correctness(elem['answer'].strip(), ann) for ann in elem['annotation']]) scores.append(score) return sum(scores) / len(scores) def evaluate_exact_match_accuracy(entries): scores = [] for elem in entries: score = max([(1.0 if (elem['answer'].strip().lower() == ann.strip().lower()) else 0.0) for ann in elem['annotation']]) scores.append(score) return sum(scores) / len(scores) def collate_fn(batches, tokenizer): questions = [_['question'] for _ in batches] question_ids = [_['question_id'] for _ in batches] annotations = [_['annotation'] for _ in batches] input_ids = tokenizer(questions, return_tensors='pt', padding='longest') return question_ids, input_ids.input_ids, input_ids.attention_mask, annotations class VQADataset(torch.utils.data.Dataset): def __init__(self, train, test, prompt, few_shot): self.test = open(test).readlines() self.prompt = prompt self.few_shot = few_shot if few_shot > 0: self.train = open(train).readlines() def __len__(self): return len(self.test) def __getitem__(self, idx): data = json.loads(self.test[idx].strip()) image, question, question_id, annotation = data['image'], data['question'], data[ 'question_id'], data['answer'] few_shot_prompt = '' if self.few_shot > 0: few_shot_samples = random.sample(self.train, self.few_shot) for sample in few_shot_samples: sample = json.loads(sample.strip()) few_shot_prompt += self.prompt.format( sample['image'], sample['question']) + f" {sample['answer']}" return { 'question': few_shot_prompt + self.prompt.format(image, question), 'question_id': question_id, 'annotation': annotation } class InferenceSampler(torch.utils.data.sampler.Sampler): def __init__(self, size): self._size = int(size) assert size > 0 self._rank = torch.distributed.get_rank() self._world_size = torch.distributed.get_world_size() self._local_indices = self._get_local_indices(size, self._world_size, self._rank) @staticmethod def _get_local_indices(total_size, world_size, rank): shard_size = total_size // world_size left = total_size % world_size shard_sizes = [shard_size + int(r < left) for r in range(world_size)] begin = sum(shard_sizes[:rank]) end = min(sum(shard_sizes[:rank + 1]), total_size) return range(begin, end) def __iter__(self): yield from self._local_indices def __len__(self): return len(self._local_indices) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=str, default='') parser.add_argument('--dataset', type=str, default='') parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--num-workers', type=int, default=1) parser.add_argument('--few-shot', type=int, default=0) parser.add_argument('--seed', type=int, default=0) args = parser.parse_args() torch.distributed.init_process_group( backend='nccl', world_size=int(os.getenv('WORLD_SIZE', '1')), rank=int(os.getenv('RANK', '0')), ) torch.cuda.set_device(torch.distributed.get_rank()) model = AutoModelForCausalLM.from_pretrained( args.checkpoint, device_map='cuda', trust_remote_code=True).eval() tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True) tokenizer.padding_side = 'left' tokenizer.pad_token_id = tokenizer.eod_id prompt = '{}{} Answer:' random.seed(args.seed) dataset = VQADataset( train=ds_collections[args.dataset]['train'], test=ds_collections[args.dataset]['test'], prompt=prompt, few_shot=args.few_shot, ) dataloader = torch.utils.data.DataLoader( dataset=dataset, sampler=InferenceSampler(len(dataset)), batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True, drop_last=False, collate_fn=partial(collate_fn, tokenizer=tokenizer), ) outputs = [] for _, (question_ids, input_ids, attention_mask, annotations) in tqdm(enumerate(dataloader)): pred = model.generate( input_ids=input_ids.cuda(), attention_mask=attention_mask.cuda(), do_sample=False, num_beams=1, max_new_tokens=ds_collections[args.dataset]['max_new_tokens'], min_new_tokens=1, length_penalty=1, num_return_sequences=1, output_hidden_states=True, use_cache=True, pad_token_id=tokenizer.eod_id, eos_token_id=tokenizer.eod_id, ) answers = [ tokenizer.decode(_[input_ids.size(1):].cpu(), skip_special_tokens=True).strip() for _ in pred ] for question_id, answer, annotation in zip(question_ids, answers, annotations): try: outputs.append({'question_id': int(question_id), 'answer': answer, 'annotation': annotation}) except: outputs.append({'question_id': question_id, 'answer': answer, 'annotation': annotation}) torch.distributed.barrier() world_size = torch.distributed.get_world_size() merged_outputs = [None for _ in range(world_size)] torch.distributed.all_gather_object(merged_outputs, outputs) merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)] if torch.distributed.get_rank() == 0: time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime()) results_file = f'{args.dataset}_{time_prefix}_fs{args.few_shot}_s{args.seed}.json' json.dump(merged_outputs, open(results_file, 'w'), ensure_ascii=False) # save to results if ds_collections[args.dataset]['metric'] == 'vqa_score': vqa = VQA(ds_collections[args.dataset]['annotation'], ds_collections[args.dataset]['question']) results = vqa.loadRes( resFile=results_file, quesFile=ds_collections[args.dataset]['question']) vqa_scorer = VQAEval(vqa, results, n=2) vqa_scorer.evaluate() print(vqa_scorer.accuracy) elif ds_collections[args.dataset]['metric'] == 'anls': merged_outputs = [{'answer': _['answer'], 'questionId': _['question_id']} for _ in merged_outputs] results_file = f'{args.dataset}_official_{time_prefix}.json' json.dump(merged_outputs, open(results_file, 'w'), ensure_ascii=False) print('python infographicsvqa_eval.py -g ' + ds_collections[args.dataset]['annotation'] + ' -s ' + results_file) os.system('python infographicsvqa_eval.py -g ' + ds_collections[args.dataset]['annotation'] + ' -s ' + results_file) elif ds_collections[args.dataset]['metric'] == 'relaxed_accuracy': print({'relaxed_accuracy': evaluate_relaxed_accuracy(merged_outputs)}) elif ds_collections[args.dataset]['metric'] == 'accuracy': if 'gqa' in args.dataset: for entry in merged_outputs: response = entry['answer'] response = response.strip().split('.')[0].split(',')[0].split('!')[0].lower() if 'is ' in response: response = response.split('is ')[1] if 'are ' in response: response = response.split('are ')[1] if 'a ' in response: response = response.split('a ')[1] if 'an ' in response: response = response.split('an ')[1] if 'the ' in response: response = response.split('the ')[1] if ' of' in response: response = response.split(' of')[0] response = response.strip() entry['answer'] = response print({'accuracy': evaluate_exact_match_accuracy(merged_outputs)}) torch.distributed.barrier()