jerryyun's picture
Add new SentenceTransformer model.
45cfc66 verified
metadata
base_model: embaas/sentence-transformers-multilingual-e5-large
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1966
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: 프리스트레스트 콘크리트 부재에 대한 최소 전단철근량은 어떻게 결정됩니까?
    sentences:
      - >-
        4.11.6슬래브의개구부(1)슬래브의개구부가집중하중이나반력의작용면에서슬래브두께의 10배이내의거리에위치하거나플랫슬래브의개구부가
        KDS 142070에서정의되는주열대내에위치할때는 4.11.1(3)과4.11.4(8)에서정의되는전단에대한위험단면은다음
        (2)와(3)과같이수정되어야한다 .(2)전단머리가없는슬래브의경우
        ,기둥또는집중하중이나반력이작용하는면의중심과개구부의경계점사이로그은직선내에있는단면의둘레부분은유효하지않은것으로하여야한다
        .(3)전단머리가있는슬래브의경우 ,유효하지않은둘레부분은상기 (2)에서정의된부분의절반으로보아야한다
        .4.11.7휨모멘트전달을위한편심전단설계(1)연직하중 ,풍하중 ,지진하중또는기타횡하중으로인하여슬래브및기초판과기둥사이에불균형휨모멘트
        가발생하면 ,이접합부는불균형휨모멘트가 전달되도록설계되어야한다 .≤ (4.11-13)여기서 ,
        는해당위험단면에작용하는계수불균형휨모멘트이며 , 은강도감소계수가고려된위험단면의설계불균형휨강도이다 .
      - >-
        콘크리트구조사용성설계기준 KDS142030:2021KDS140000구조설계기준 8부록
        .균열의검증1.일반사항1.1목적(1)이기준의부록은균열의검증방법을규정한다 .1.2적용범위(1)이기준의부록은철근콘크리트구조물의내구성
        ,사용성및미관등에대한균열폭검증이필요한경우에적용한다 .(2)수밀성이요구되는구조물은이부록의규정에따라검토하여야한다
        .(3)미관이중요한구조물은 발주자또는건축주의특별한요구가없는경우내구성에대한허용균열폭으로검토할수있다 .
      - >-
        콘크리트구조전단및비틀림설계기준 KDS142022:2022KDS140000구조설계기준
        11min(4.3-1)그러나최소전단철근량은 보다작지않아야한다 . 여기서
        , 와의단위는 mm이다.(4)휨철근또는긴장재인장강도의 40%이상의유효프리스트레스 힘이작용하는프리스트레스트콘크리트
        부재에대한최소전단철근량은식(4.3-1)과식(4.3-2)에의해구한값중작은값이상으로하여야한다
        .min(4.3-2)4.3.4전단철근의설계(1)계수전단력 가설계전단강도
        를초과하는곳에는식 (4.1-1)과식(4.1-2)를만족시키기위해전단철근을배치하여야하며 ,전단철근에의한전단강도 를다음
        (2)부터 (9)까지규정에따라산정하여야한다 .(2)부재축에직각인전단철근을사용하는경우에다음식(4.3-3)에따라전단강도
        를계산하여야한다 .
  - source_sentence: 콘크리트 구조물에서 유효 깊이가 200mm 이하일  허용되는 오차 범위는 얼마인가요?
    sentences:
      - >-
        ≦lim(3.2-2)여기서 ,:염해에대한환경계수로서일반적으로 1.11:염해에대한내구성감소계수로서일반적으로
        0.86lim:철근부식이시작될때의임계염소이온농도:철근위치에서염소이온농도의예측값(2)염해에대한콘크리트구조물의내구성평가를위한염소이온농도는콘크리트중의염소이온의확산에관한기초방정식인피크
        (Fick)의제2법칙을유한요소법또는유한차분법을사용하여구하거나 ,부록식(3.2-3)을사용하여구할수있다
        .(3.2-3)
      - >-
        콘크리트구조휨및압축설계기준 KDS142020:2022KDS140000구조설계기준 10여기서 ,은휨부재의균열휨모멘트로 KDS
        142030(식(4.2-2))에따라계산한다 .(2)부재의모든단면에서해석에의해필요한철근량보다
        1/3이상인장철근이더배치되어식(4.2-2)의조건을만족하는경우는상기 (1)의규정을적용하지않을수있다 .≥
        (4.2-2)(3)두께가균일한구조용슬래브와기초판에대하여경간방향으로보강되는휨철근의단면적은 KDS
        142050(4.6)에규정한값이상이어야한다 .철근의최대간격은슬래브또는기초판두께의 3배와 450mm중작은값을초과하지않도록하여야한다
        .4.2.3보및1방향슬래브의휨철근배치(1)보또는한방향으로만휨응력을저항하도록철근이배치된
        1방향슬래브는휨균열을제어하기위하여휨철근의배치에대한이4.2.3의규정을따라야한다 .(2)2방향슬래브의휨철근배치는 KDS
        142070(4.1.5)의규정을따라야한다 .(3)휨인장철근은다음 (4)에규정된바에따라부재단면의최대휨인장영역내에배치되어야한다 .
      - >-
        콘크리트구조철근상세설계기준 KDS142050:2022KDS140000구조설계기준 4(2)철근 ,긴장재및덕트는
        4.2.1의허용오차이내에서규정된위치에배치하여야한다 .다만 ,책임구조기술자가 특별히승인한경우에는허용오차를벗어날수있다 .①휨부재
        ,벽체 ,압축부재에서의 유효깊이 에대한허용오차와콘크리트의최소피복두께에대한허용오차는표4.2-1에따라야한다 .유효깊이() 허용범위
        콘크리트최소피복두께1)≤200mm>200mm±10mm±13mm-10mm-13mm주1)다만,하단거푸집까지의 순거리에
        대한허용오차는-7mm이다.또한모든경우의피복두께허용오차는도면또는구조기준에서 요구하는 최소피복두께의-1/3을초과하지
        않아야한다.표4.2-1허용오차②종방향으로철근을구부리거나철근이끝나는단부의허용오차는 ±50mm이다 .다만
        ,브래킷과내민받침의불연속단에서허용오차는 ±13mm이며그밖의부재의불연속단에서허용오차는 ±25mm이다 .또한부재의불연속단에서도
        상기①의최소피복두께규정을적용하여야한다 .
  - source_sentence: 2 휨을 받는 압축부재의 설계  고려해야  주요 요소는 무엇입니까?
    sentences:
      - >-
        콘크리트구조휨및압축설계기준 KDS142020:2022KDS140000구조설계기준 16=-∑∑≥
        (4.4-14)여기서 ,∑는한층의모든연직계수축력의 합이고 ,∑는횡방향변위에저항하는모든기둥의임계축력 의합이다 .는다음
        (4)의와4.4.6(3)의를사용하여식(4.4-6)에의해계산하지만
        4.4.6(3)의계산식에서계수축력에의한대신계수전단력에의한를사용하여야한다
        .(4)비횡구속골조의압축부재에대한유효길이계수 는4.4.4의와값을사용하여결정하며 ,이값은 1.0이상이어야한다
        .(5)비횡구속골조접합부의휨부재는압축부재의확대된단부계수휨모멘트에 대하여설계되어야한다 .4.52축휨을받는압축부재(1)두축방향의횡하중
        ,인접경간의하중불균형등으로인하여압축부재에 2축휨모멘트가작용되는경우에는 2축휨을받는압축부재로설계하여야한다
        .(2)압축부재단면의편심거리는소성중심부터축력작용점까지거리로취하여야한다 .
      - >-
        콘크리트구조스트럿-타이모델기준 KDS142024:2021KDS140000구조설계기준 33.재료(1)KDS 142001(3)을따른다
        .4.설계4.1스트럿 -타이모델설계절차4.1.1설계절차일반(1)콘크리트구조부재또는 D영역은이상화된트러스모델로설계할수있다
        .(2)트러스모델은스트럿 ,타이그리고절점으로구성한다 .(3)트러스모델은모든계수하중을지지판 ,압축응력블록 ,인장타이또는인접한
        B영역으로전달하여야한다 .4.1.2설계절차(1)콘크리트구조부재또는 D영역의스트럿 -타이모델설계는다음 (2)부터
        (6)까지에규정된설계절차에따라야한다
        .(2)설계대상영역을설정하고설계대상영역의설계를위한초기조건을결정하여야한다.(3)설계대상영역의설계를위한스트럿 -타이모델을구성하여야한다
        .
      - >-
        (3)각성능저하요인에 대하여내구성을평가할때사용되는환경계수와내구성감소계수는각성능저하요인에대해독립적으로적용하여야한다
        .4.3콘크리트구조물의내구성평가4.3.1일반사항(1)이부록은내구성이특별히요구되지않는콘크리트구조물이나
        ,특수한공법및재료를사용한콘크리트구조물을제외한일반적인콘크리트구조물에대해성능저하요인별시공전콘크리트구조물의내구성을평가하고이에따른내구성의확보를위해적용한다
        .(2)성능저하환경에 놓여있는콘크리트구조물의주된성능저하인자인 염해 ,탄산화 ,동결
  - source_sentence: 온도가 일정하지 않을 경우 콘크리트의 재령을 보정하는 식에서 사용되는 변수들과  의미는 무엇인가요?
    sentences:
      - >-
        콘크리트구조내구성설계기준 KDS142040:2022KDS140000구조설계기준
        10융해,화학적침식,알칼리골재반응에대하여검토하여야한다 .(3)콘크리트구조물이목표내구수명동안에지배적인성능저하인자에
        따라요구되는내구성능을평가하여야한다 .(4)콘크리트구조물에여러성능저하인자가
        복합적으로작용하는경우에는각각의성능저하인자가독립적으로작용한다고가정하여콘크리트구조물의내구성을평가하며
        ,가장지배적인성능저하인자에대한내구성평가결과를적용할수있다
        .4.3.2염해에관한내구성평가4.3.2.1해당구조물의염해환경설정(1)염해를받을수있는환경에놓인콘크리트구조물의환경조건은국내해안선으로부터의거리에따라계측한콘크리트표면의염소이온농도(kg/m³)를설정하여야한다
        .4.3.2.2철근부식임계염소이온농도설정(1)철근부식을일으키는임계염소이온농도lim는부록식(3.2-1)을사용하여구할수있다
        .limbind (3.2-1)여기서 ,bind:단위결합재량
        (kg/m3)4.3.2.3콘크리트구조물의염해내구성평가(1)염소이온침투에의한콘크리트구조물의내구성은부록식(3.2-2)에의해평가한다 .
      - >-
        콘크리트구조설계(강도설계법)일반사항 KDS142001:2022KDS140000구조설계기준 32부록
        .성능기반설계기본고려사항1.일반사항1.1적용범위(1)부록은성능기반형으로
        설계되는콘크리트구조물에적용하기위한성능검증방법의개념과원칙을제시하는것을목적으로한다 .(2)발주자는콘크리트구조물의안전성능 ,사용성능
        ,내구성능또는환경성능을고려하여필요한성능지표를정하고이들각각에대한정량적목표를제시하여야한다
        .(3)요구성능의검증은본문에제시된설계방법또는이부록에제시된원칙에기초한검증방법을이용하여수행할수있다 .1.2용어의정의(1)KDS
        142001(1.3)에따른다.2.설계원칙2.1일반사항(1)콘크리트구조물의설계는의도하는용도에적합한하중조합에근거하여야하며,재료및구조물치수에대한적절한설계값을선택한후합리적인거동이론을적용하여구한구조성능이요구되는한계기준을만족한다는것을검증하여야한다
        .(2)콘크리트구조물은적절한정도의신뢰성과경제성을확보하면서 ,목표하는사용수명동안발생가능한모든하중과환경에대하여요구되는구조적안전성능
        ,사용성능 ,내구성능과환경성능을갖도록설계하여야한다 .
      - >-
        가. 양생온도및시멘트종류에따른보정계수양생동안온도의변화가있거나 20 ℃가아닌대기에노출되어있는경우,
        재하할때의콘크리트재령′는온도와시멘트종류를고려하여다음과같이보정하여야한다
        .′′′≥일
        (3.1-9)′=exp-++(3.1-10)
        =-종시멘트종종시멘트종시멘트여기서 , 는일동안지속된온도(℃),
        는일정한온도가지속된기간 (일)이고 , 은일정한온도를유지한단계의수이다 .나.
  - source_sentence: 압축력이 지배적인 부재의 설계 강도 해석에서 중립축이 단면 밖에 위치할 때, 어떤 상태를 극한 상태로 간주합니까?
    sentences:
      - >-
        (4)휨과축력이동시에작용하는부재의설계강도해석에서
        압축력이지배적이어서중립축이단면밖에놓인경우에는압축연단의변형률이한계변형률에도달할때를극한상태로간주한다
        .이때의한계변형률은압축력과휨모멘트의작용을고려한변형률분포로결정한다
        .(5)프리스트레스를가하지않은휨부재는설계휨강도해석에서구한중립축의깊이가다음값의최대허용중립축깊이이하이어야한다
        .max  (3-1)3.2설계축강도와최소계수휨모멘트(1)압축부재의설계축강도는다음과같이결정하여야한다
        .단,KDS 142020(4.1.1(9))에따라횡방향구속효과를고려하는경우에는이값을초과할수있다 .①프리스트레스를
        가하지않은압축부재에서축방향철근의설계항복변형률
        가KDS142020(4.1.1)에규정된콘크리트의변형률이하인경우다음식에따라설계축강도를결정하여야한다 .
      - >-
        (7)설계자는내구성에관련된콘크리트재료 ,피복두께 ,철근과긴장재 ,처짐 ,균열 ,피로및기타사항에대한제반규정을모두검토하여야한다
        .4.1.3노출범주및등급(1)책임구조기술자는 구조용콘크리트부재에대해예측되는노출정도를고려하여표4.1-1에따라노출등급을정하여야한다 .
      - >-
        콘크리트구조철근상세설계기준 KDS142050:2022KDS140000구조설계기준 10⑤보또는브래킷이기둥의
        4면에연결되어있는경우에가장낮은보또는브래킷의최하단수평철근아래에서 75mm이내에서띠철근배치를끝낼수있다 .단,이때보의폭은해당기둥면폭의
        1/2이상이어야한다 .⑥앵커볼트가기둥상단이나주각상단에위치한경우에앵커볼트는기둥이나주각의적어도
        4개이상의수직철근을감싸고있는횡방향철근에의해둘러싸여져야한다 .횡방향철근은기둥상단이나주각상단에서 125mm이내에배치하고적어도2개이상의
        D13철근이나 3개이상의 D10철근으로구성되어야한다
        .4.5기둥및접합부철근의특별배치상세4.5.1옵셋굽힘철근(1)기둥연결부에서단면치수가변하는경우다음규정에따라옵셋굽힘철근을배치하여야한다
        .(2)옵셋굽힘철근의굽힘부에서기울기는 1/6을초과할수없다 .(3)옵셋굽힘철근의굽힘부를벗어난상⋅하부철근은기둥축에평행하여야한다 .

SentenceTransformer based on embaas/sentence-transformers-multilingual-e5-large

This is a sentence-transformers model finetuned from embaas/sentence-transformers-multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jerryyun/kicon_con_e5large_15")
# Run inference
sentences = [
    '압축력이 지배적인 부재의 설계 강도 해석에서 중립축이 단면 밖에 위치할 때, 어떤 상태를 극한 상태로 간주합니까?',
    '(4)휨과축력이동시에작용하는부재의설계강도해석에서 압축력이지배적이어서중립축이단면밖에놓인경우에는압축연단의변형률이한계변형률에도달할때를극한상태로간주한다 .이때의한계변형률은압축력과휨모멘트의작용을고려한변형률분포로결정한다 .(5)프리스트레스를가하지않은휨부재는설계휨강도해석에서구한중립축의깊이가다음값의최대허용중립축깊이이하이어야한다 .\ue0e7max\ue047\ue06d\ue10e\ue0e7\ue0f9\ue048\ue0b1\ue0f7\ue10e\ue0fd\ue10e\ue0e7\ue0f9\ue0e8  (3-1)3.2설계축강도와최소계수휨모멘트(1)압축부재의설계축강도는다음과같이결정하여야한다 .단,KDS 142020(4.1.1(9))에따라횡방향구속효과를고려하는경우에는이값을초과할수있다 .①프리스트레스를 가하지않은압축부재에서축방향철근의설계항복변형률 \ue0b1\ue0f7\ue10e\ue0fd가KDS142020(4.1.1)에규정된콘크리트의변형률\ue10e\ue0e7\ue0f3이하인경우다음식에따라설계축강도를결정하여야한다 .',
    '콘크리트구조철근상세설계기준 KDS142050:2022KDS140000구조설계기준 10⑤보또는브래킷이기둥의 4면에연결되어있는경우에가장낮은보또는브래킷의최하단수평철근아래에서 75mm이내에서띠철근배치를끝낼수있다 .단,이때보의폭은해당기둥면폭의 1/2이상이어야한다 .⑥앵커볼트가기둥상단이나주각상단에위치한경우에앵커볼트는기둥이나주각의적어도 4개이상의수직철근을감싸고있는횡방향철근에의해둘러싸여져야한다 .횡방향철근은기둥상단이나주각상단에서 125mm이내에배치하고적어도2개이상의 D13철근이나 3개이상의 D10철근으로구성되어야한다 .4.5기둥및접합부철근의특별배치상세4.5.1옵셋굽힘철근(1)기둥연결부에서단면치수가변하는경우다음규정에따라옵셋굽힘철근을배치하여야한다 .(2)옵셋굽힘철근의굽힘부에서기울기는 1/6을초과할수없다 .(3)옵셋굽힘철근의굽힘부를벗어난상⋅하부철근은기둥축에평행하여야한다 .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,966 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 12 tokens
    • mean: 27.91 tokens
    • max: 62 tokens
    • min: 11 tokens
    • mean: 246.43 tokens
    • max: 419 tokens
  • Samples:
    sentence_0 sentence_1
    KDS 14 00 00 설계기준은 어느 나라의 기준인가요? KDS 14 00 00설계기준 Korean Design StandardKDS 14 00 00 : 2022구조설계기준2022년1월11일개정http://www.kcsc.re.kr
    2022년 1월 11일에 개정된 KDS 14 00 00 구조설계기준은 어디에서 확인할 수 있나요? KDS 14 00 00설계기준 Korean Design StandardKDS 14 00 00 : 2022구조설계기준2022년1월11일개정http://www.kcsc.re.kr
    KDS 14 20 00 콘크리트 구조 설계에서 사용되는 강도설계법의 기본 원칙은 무엇인가요? 구조설계기준체계KDS 14 20 00콘크리트구조설계(강도설계법 ) KDS 14 20 01 콘크리트구조설계(강도설계법 ) 일반사항 KDS 14 20 10 콘크리트구조해석과설계원칙 KDS 14 20 20 콘크리트구조휨및압축설계기준 KDS 14 20 22 콘크리트구조전단및비틀림설계기준 KDS 14 20 24 콘크리트구조스트럿 -타이모델기준 KDS 14 20 26 콘크리트구조피로설계기준 KDS 14 20 30 콘크리트구조사용성설계기준 KDS 14 20 40 콘크리트구조내구성설계기준 KDS 14 20 50 콘크리트구조철근상세설계기준 KDS 14 20 52 콘크리트구조정착및이음설계기준 KDS 14 20 54 콘크리트용앵커설계기준 KDS 14 20 60 프리스트레스트콘크리트구조설계기준 KDS 14 20 62 프리캐스트콘크리트구조설계기준 KDS 14 20 64 구조용무근콘크리트설계기준 KDS 14 20 66 합성콘크리트설계기준 KDS 14 20 70 콘크리트슬래브와기초판설계기준 KDS 14 20 72 콘크리트벽체설계기준 KDS 14 20 74 기타콘크리트구조설계기준 KDS 14 20 80 콘크리트내진설계기준 KDS 14 20 90 기존콘크리트구조물의
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 15
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 15
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
8.0645 500 0.2562

Framework Versions

  • Python: 3.11.0rc1
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.1
  • PyTorch: 2.2.2+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}