hlnicholls's picture
fix: changing cluster colours
66e1901 verified
raw
history blame contribute delete
No virus
11.8 kB
import streamlit as st
import re
import numpy as np
import pandas as pd
import pickle
import sklearn
import catboost
import shap
import plotly.tools as tls
from dash import dcc
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
import plotly.express as px
import matplotlib.pyplot as plt
import plotly.graph_objs as go
import plotly.graph_objects as go
try:
import matplotlib.pyplot as pl
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.ticker import MaxNLocator
except ImportError:
pass
st.set_option('deprecation.showPyplotGlobalUse', False)
seed = 0
annotations = pd.read_csv("all_genes_imputed_features.csv")
annotations.fillna(0, inplace=True)
annotations = annotations.set_index("Gene")
model_path = "best_model_fitted.pkl"
with open(model_path, 'rb') as file:
catboost_model = pickle.load(file)
probabilities = catboost_model.predict_proba(annotations)
prob_df = pd.DataFrame(probabilities, index=annotations.index, columns=['Probability_Most_Likely', 'Probability_Probable', 'Probability_Least_Likely'])
df_total = pd.concat([prob_df, annotations], axis=1)
# Create tabs for navigation
with st.sidebar:
st.sidebar.title("Navigation")
tab = st.sidebar.radio("Go to", ("Gene Prioritisation", "Interactive SHAP Plot", "Supervised SHAP Clustering"))
st.title('Blood Pressure Gene Prioritisation Post-GWAS')
st.markdown("""A machine learning pipeline for predicting disease-causing genes post-genome-wide association study in blood pressure.""")
# Define a function to collect genes from input
collect_genes = lambda x: [str(i) for i in re.split(",|,\s+|\s+", x) if i != ""]
input_gene_list = st.text_input("Input a list of multiple HGNC genes (enter comma separated):")
gene_list = collect_genes(input_gene_list)
explainer = shap.TreeExplainer(catboost_model)
@st.cache_data
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
probability_columns = ['Probability_Most_Likely', 'Probability_Probable', 'Probability_Least_Likely']
features_list = [column for column in df_total.columns if column not in probability_columns]
features = df_total[features_list]
# Page 1: Gene Prioritisation
if tab == "Gene Prioritisation":
if len(gene_list) > 1:
df = df_total[df_total.index.isin(gene_list)]
df['Gene'] = df.index
df.reset_index(drop=True, inplace=True)
required_columns = ['Gene'] + probability_columns + [column for column in df.columns if column not in probability_columns and column != 'Gene']
df = df[required_columns]
st.dataframe(df)
output = df[['Gene'] + probability_columns]
csv = convert_df(output)
st.download_button("Download Gene Prioritisation", csv, "bp_gene_prioritisation.csv", "text/csv", key='download-csv')
df_shap = df.drop(columns=probability_columns + ['Gene'])
shap_values = explainer.shap_values(df_shap)
col1, col2 = st.columns(2)
class_names = ["Most likely", "Probable", "Least likely"]
with col1:
st.subheader("Global SHAP Summary Plot")
shap.summary_plot(shap_values, df_shap, plot_type="bar", class_names=class_names)
st.pyplot(bbox_inches='tight', clear_figure=True)
with col2:
st.subheader(f"{class_names[0]} Gene Prediction")
shap.summary_plot(shap_values[0], df_shap)
st.pyplot(bbox_inches='tight', clear_figure=True)
col3, col4 = st.columns(2)
with col3:
st.subheader(f"{class_names[1]} Gene Prediction")
shap.summary_plot(shap_values[1], df_shap)
st.pyplot(bbox_inches='tight', clear_figure=True)
with col4:
st.subheader(f"{class_names[2]} Gene Prediction")
shap.summary_plot(shap_values[2], df_shap)
st.pyplot(bbox_inches='tight', clear_figure=True)
else:
pass
input_gene = st.text_input("Input an individual HGNC gene:")
if input_gene:
df2 = df_total[df_total.index == input_gene]
class_names = ["Most likely", "Probable", "Least likely"]
if not df2.empty:
df2['Gene'] = df2.index
df2.reset_index(drop=True, inplace=True)
required_columns = ['Gene'] + probability_columns + [col for col in df2.columns if col not in probability_columns and col != 'Gene']
df2 = df2[required_columns]
st.dataframe(df2)
if ' ' in input_gene or ',' in input_gene:
st.write('Input Error: Please input only a single HGNC gene name with no white spaces or commas.')
else:
df2_shap = df_total.loc[[input_gene], [col for col in df_total.columns if col not in probability_columns + ['Gene']]]
print(df2_shap.columns)
shap_values = explainer.shap_values(df2_shap)
shap.getjs()
for i in range(3):
st.subheader(f"Force Plot for {class_names[i]} Prediction")
force_plot = shap.force_plot(
explainer.expected_value[i],
shap_values[i],
df2_shap,
matplotlib=True,
show=False
)
st.pyplot(fig=force_plot)
else:
st.write("Gene not found in the dataset.")
else:
pass
url = f"https://astrazeneca-cgr-publications.github.io/DrugnomeAI/geneview.html?gene={input_gene}"
markdown_link = f"[{input_gene} druggability in DrugnomeAI]({url})"
st.markdown(markdown_link, unsafe_allow_html=True)
st.markdown("""
### Total Gene Prioritisation Results for All Genes:
""")
df_total_output = df_total
df_total_output['Gene'] = df_total_output.index
#df_total_output.reset_index(drop=True, inplace=True)
st.dataframe(df_total_output)
csv = convert_df(df_total_output)
st.download_button("Download Gene Prioritisation", csv, "all_genes_bp_prioritisation.csv", "text/csv", key='download-all-csv')
elif tab == "Interactive SHAP Plot":
st.title("Interactive SHAP Plot")
if len(gene_list) > 1:
df = df_total[df_total.index.isin(gene_list)]
df['Gene'] = df.index
df.reset_index(drop=True, inplace=True)
required_columns = ['Gene'] + probability_columns + [column for column in df.columns if column not in probability_columns and column != 'Gene']
df = df[required_columns]
st.dataframe(df)
output = df[['Gene'] + probability_columns]
csv = convert_df(output)
st.download_button("Download Gene Prioritisation", csv, "bp_gene_prioritisation.csv", "text/csv", key='download-csv')
df_shap = df.drop(columns=probability_columns + ['Gene'])
shap_values = explainer.shap_values(df_shap)
shap_values_first_class = shap_values[0]
feature_importance = np.abs(shap_values_first_class).mean(axis=0)
top_features_indices = np.argsort(feature_importance)[-20:]
features_top = df_shap.columns[top_features_indices][::-1]
shap_values_top = shap_values_first_class[:, top_features_indices][..., ::-1]
# Prepare data for a single trace
x_values = []
y_values = []
hover_texts = []
for i, feature_name in enumerate(features_top):
for gene, value in zip(df['Gene'], shap_values_top[:, i]):
x_values.append(value)
y_values.append(feature_name)
hover_texts.append(f'{gene}: {value:.3f}')
# Create a single trace for the plot
fig = go.Figure(data=go.Scatter(
x=x_values,
y=y_values,
mode='markers',
marker=dict(
color=x_values, # Set color to SHAP values
colorbar=dict(title="SHAP Value"),
colorscale=[(0, "blue"), (1, "red")], # Blue to Red color scale
),
text=hover_texts, # Set hover text
hoverinfo="text+x" # Display hover text and x-value (SHAP value)
))
fig.update_layout(
title="SHAP Summary Plot - Top 20 Features",
xaxis_title="SHAP Value",
yaxis=dict(autorange="reversed", title="Feature"),
showlegend=False,
)
st.plotly_chart(fig, use_container_width=True)
st.caption("SHAP Summary Plot of All Input Genes - Top 20 Features")
elif tab == "Supervised SHAP Clustering":
st.title("Supervised SHAP Clustering")
training_genes = pd.read_csv("training_cleaned.csv")
training_genes = training_genes[training_genes['BPlabel_encoded'] == 0]
training_genes.set_index('Gene', inplace=True)
# Calculate SHAP values for the full dataset
shap_values_full = explainer.shap_values(annotations)
shap_values_full_array = np.array(shap_values_full[0])
# Apply PCA to reduce dimensionality for visualization
pca = PCA(n_components=2)
shap_values_pca = pca.fit_transform(shap_values_full_array)
# Apply clustering on the PCA-reduced SHAP values
kmeans = KMeans(n_clusters=3, random_state=0).fit(shap_values_pca)
# Get cluster labels for each point in the dataset
labels = kmeans.labels_
# Prepare a DataFrame for visualization
df_for_plot = pd.DataFrame({
'PCA_1': shap_values_pca[:, 0],
'PCA_2': shap_values_pca[:, 1],
'Cluster': labels.astype(str),
'Gene': annotations.index,
'Type': 'Clustered Gene'
})
# Add a new column for marking the special groups
df_for_plot['SpecialGroup'] = 'None'
df_for_plot.loc[df_for_plot['Gene'].isin(training_genes.index), 'SpecialGroup'] = 'Most Likely Training Gene'
if gene_list:
df_for_plot.loc[df_for_plot['Gene'].isin(gene_list), 'SpecialGroup'] = 'User Input Gene'
# Initialize an empty figure
fig = go.Figure()
# Define color mapping for clusters
cluster_colors = ['#ADD8E6', '#87CEEB', '#1E90FF']
# Plot clustered genes based on PCA components
for i, cluster in enumerate(df_for_plot['Cluster'].unique()):
filtered_df = df_for_plot[(df_for_plot['Cluster'] == cluster) & (df_for_plot['SpecialGroup'] == 'None')]
fig.add_trace(go.Scatter(
x=filtered_df['PCA_1'], y=filtered_df['PCA_2'],
mode='markers',
name=f'Cluster {cluster}',
text=filtered_df['Gene'],
marker=dict(color=cluster_colors[i]),
hoverinfo="text+x+y",
))
# Overlay "Most Likely Training Gene"
filtered_df = df_for_plot[df_for_plot['SpecialGroup'] == 'Most Likely Training Gene']
fig.add_trace(go.Scatter(
x=filtered_df['PCA_1'], y=filtered_df['PCA_2'],
mode='markers',
name='Most Likely Training Gene',
text=filtered_df['Gene'],
marker=dict(color='black'),
hoverinfo="text+x+y",
))
# Overlay "User Input Gene"
filtered_df = df_for_plot[df_for_plot['SpecialGroup'] == 'User Input Gene']
fig.add_trace(go.Scatter(
x=filtered_df['PCA_1'], y=filtered_df['PCA_2'],
mode='markers',
name='User Input Gene',
text=filtered_df['Gene'],
marker=dict(color='purple'),
hoverinfo="text+x+y",
))
# Customize layout
fig.update_layout(
title='Supervised SHAP Clustering with PCA',
xaxis_title='First Principal Component',
yaxis_title='Second Principal Component',
showlegend=True,
legend_title_text='Gene Category',
)
st.plotly_chart(fig, use_container_width=True)