flux-kiwi / app.py
jadechoghari's picture
Update app.py
c77781d verified
raw
history blame
5.55 kB
# import gradio as gr
# import torch
# import spaces
# from diffusers import FluxPipeline, DiffusionPipeline
# from torchao.quantization import autoquant
# # # # normal FluxPipeline
# # pipeline_normal = FluxPipeline.from_pretrained(
# # "sayakpaul/FLUX.1-merged",
# # torch_dtype=torch.bfloat16
# # ).to("cuda")
# # pipeline_normal.transformer.to(memory_format=torch.channels_last)
# # pipeline_normal.transformer = torch.compile(pipeline_normal.transformer, mode="max-autotune", fullgraph=True)
# pipeline_normal = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged")
# pipeline_normal.enable_model_cpu_offload()
# pipeline_normal.load_lora_weights("DarkMoonDragon/TurboRender-flux-dev")
# # # optimized FluxPipeline
# # pipeline_optimized = FluxPipeline.from_pretrained(
# # "camenduru/FLUX.1-dev-diffusers",
# # torch_dtype=torch.bfloat16
# # ).to("cuda")
# # pipeline_optimized.transformer.to(memory_format=torch.channels_last)
# # pipeline_optimized.transformer = torch.compile(
# # pipeline_optimized.transformer,
# # mode="max-autotune",
# # fullgraph=True
# # )
# # # wrap the autoquant call in a try-except block to handle unsupported layers
# # for name, layer in pipeline_optimized.transformer.named_children():
# # try:
# # # apply autoquant to each layer
# # pipeline_optimized.transformer._modules[name] = autoquant(layer, error_on_unseen=False)
# # print(f"Successfully quantized {name}")
# # except AttributeError as e:
# # print(f"Skipping layer {name} due to error: {e}")
# # except Exception as e:
# # print(f"Unexpected error while quantizing {name}: {e}")
# # pipeline_optimized.transformer = autoquant(
# # pipeline_optimized.transformer,
# # error_on_unseen=False
# # )
# pipeline_optimized = pipeline_normal
# @spaces.GPU(duration=120)
# def generate_images(prompt, guidance_scale, num_inference_steps):
# # # generate image with normal pipeline
# # image_normal = pipeline_normal(
# # prompt=prompt,
# # guidance_scale=guidance_scale,
# # num_inference_steps=int(num_inference_steps)
# # ).images[0]
# # generate image with optimized pipeline
# image_optimized = pipeline_optimized(
# prompt=prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=int(num_inference_steps)
# ).images[0]
# return image_optimized
# # set up Gradio interface
# demo = gr.Interface(
# fn=generate_images,
# inputs=[
# gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"),
# gr.Slider(1.0, 10.0, step=0.5, value=3.5, label="Guidance Scale"),
# gr.Slider(10, 100, step=1, value=50, label="Number of Inference Steps")
# ],
# outputs=[
# gr.Image(type="pil", label="Optimized FluxPipeline")
# ],
# title="FluxPipeline Comparison",
# description="Compare images generated by the normal FluxPipeline and the optimized one using torchao and torch.compile()."
# )
# demo.launch()
import gradio as gr
import torch
from diffusers import FluxPipeline
from torchao import swap_conv2d_1x1_to_linear, apply_dynamic_quant
# Step 1: Enable PyTorch 2-specific optimizations
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
torch._inductor.config.force_fuse_int_mm_with_mul = True
torch._inductor.config.use_mixed_mm = True
# Step 2: Load the Flux pipeline with bfloat16 precision
pipe = FluxPipeline.from_pretrained(
"sayakpaul/FLUX.1-merged",
torch_dtype=torch.bfloat16
).to("cuda")
# Step 3: Apply attention optimizations
pipe.fuse_qkv_projections()
# Step 4: Change memory layout for performance boost
pipe.unet.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
# Step 5: Swap Conv2D 1x1 layers to Linear and apply dynamic quantization
def dynamic_quant_filter_fn(mod, *args):
return isinstance(mod, torch.nn.Linear) and mod.in_features > 16
def conv_filter_fn(mod, *args):
return isinstance(mod, torch.nn.Conv2d) and mod.kernel_size == (1, 1)
swap_conv2d_1x1_to_linear(pipe.unet, conv_filter_fn)
swap_conv2d_1x1_to_linear(pipe.vae, conv_filter_fn)
apply_dynamic_quant(pipe.unet, dynamic_quant_filter_fn)
apply_dynamic_quant(pipe.vae, dynamic_quant_filter_fn)
# Step 6: Compile the UNet and VAE for optimized kernels
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True)
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
# Image generation function
def generate_image(prompt, guidance_scale, num_inference_steps):
# Generate the image using the optimized pipeline
image = pipe(prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
return image
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Optimized Flux Model Inference")
with gr.Row():
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
guidance_scale = gr.Slider(0.0, 15.0, value=7.5, step=0.1, label="Guidance Scale")
steps = gr.Slider(5, 50, value=30, step=1, label="Inference Steps")
image_output = gr.Image(type="pil", label="Generated Image")
generate_button = gr.Button("Generate Image")
generate_button.click(generate_image, inputs=[prompt, guidance_scale, steps], outputs=image_output)
demo.launch()